

ANATOMYOFTHEDRAGON
advanced BASIC programming

Mike James

'}sigma Technical Press

Copyright © 1983 by M. James

All Rights Reserved

No part of this book may be reproduced or transmitted by any means without
the prior permission of the publisher. The only exceptions are for the
purposes of review, or as provided for by the Copyright (Photocopying) Act
or in order to enter the programs herein onto a computer for the sole use of the
purchaser of this book.

ISBN 0-905104-35-8

Published by:
SIGMA TECHNICAL PRESS
5 Alton Road
Wilmslow
Cheshire
UK

Distributors:

Europe, Africa:
JOHN WILEY & SONS LIMITEO
Baffins Lane, Chichester,
Wester Sussex, England.

Australia, New Zealand, South-East Asia:
Jacaranda-Wiley Ltd., Jacaranda Press,
JOHN WILEY & SONS ING.,
GPO Box 859, Brisbane,
Queensland 40001, Australia

Typeset, Printed and Bound by Commercial Colour Press, London E7,

Preface

The Dragon can be a frustrating machine to use unless you understand fairly
clearly what its BASIC commands do and how they are affected by the way
its hardware works. When I first met the Dragon I was very impressed and
excited because it was the first low cost computer to use the remarkably
powerful 6809 microprocessor. However my initial enthusiasm was a little
dampened after trying to write a few programs. Things just didn't always
work out as well as l expected and l just couldn't seem to produce the
graphics effects that I wanted.

If this story sounds at all familiar to you then do not despair because it has a
happy ending. Rather than blame the machine I decided to examine the
Dragon and Dragon BASIC to find out what I was doing wrong. This book
contains most of the more important things that I discovered about the way
the Dragon works. In the course of experimentation and discovery I can
honestly say that my initial enthusiasm has been rekindled. Indeed my respect
for the Dragon has only been increased by a closer examination. The Dragon
is a machine with hidden depths!

If you are looking for a 'cookbook' of Dragon hints and tips that you can
simply apply without understanding, then, for the most part, this book isn't
for you. For while there are many 'do it this way' sections, its main concern is
to build up a picture of the working Dragon so that you will never be surprised
by the results of a BASIC command and will find new ways to use your
machine.

The Dragon is an interesting computer and a great deal of fun.
hope that you will enjoy its fascination as much as I do.

Mike James

iii

Contents

1. Learning About the Dragon 1
What You Should Already Know 2
The Order of Things 3
What is to Come 3

2. Inside the Dragon 5
The Dragon asa Computer 6
The TV Display 8

The PIAs- Input/Output 12
A Complete Block Diagram of the Dragon 14
The Memory Map 16

3. Text and Low Resolution Graphics 21
The Display Modes 21
The 6847 Video Generator 22
Setting SAM 23
Text and Inverted Text- POKEing the Screen 24
Low Resolution Graphics 29
Using Low Resolution Graphics 30
Using Graphics Characters 33
Using the Other Semi-Graphics Modes 34
When to use Semi-Graphics 39

4. High Resolution Graphics 40
Free Graphics but no Alpha! 40
Using High Resolution Graphics 40
The Dragon's Graphics Modes 45
Using the Graphic Modes 46
The best of all possible modes 49

iv

5. Sound 50
Using SOUND and PLAY 5 1
The Sound Generator- a 6 bit D to A 53
Selecting the Source 57
Single Bit Sound and Sound Sense 60
Using AUDIO and MOTOR 6 1
BASIC Sounds 63

6. Advanced Graphics 64
Paged Graphics 64
The DRAW Command 70
GET and PUT: User-Defined Characters 70
Joysticks and Lightpens 83
What the Dragon Lacks 85

7. Interfacing 86
The6821 PIA 86
The Dragon's PIAs 90
Setting PI As- the use of AND, OR and NOT 91
The Keyboard 95
The Printer Interface-a User Part 99
The Joystick Interface- an A to D converter 101
The Cassette Interface 105
The BASIC Timer 106
The Expansion Port 107
Softwarevs Hardware- using the Dragon as a VDU 109

8. Inside BASIC 112
BASIC's Use of Memory 112
Dragon Data Formats 116
The Format of BASIC Lines 118
Recovering Programs 118
The TAB Function 119
Adding Commands to BASIC 120
Some Useful Memory Locations 12 1

9. Introduction to 6809 Assembler and Machine Code 123
Slow BASIC 124
The Characteristics of Machine Code 125
The6809 125
The LOA A and ADD A Instructions 126

V

A Short, Example Program
A Second Example- Reversing the Screen

Appendix I 6847, 6821 and 6883 Pin Connections

Appendix II The Graphics Modes

vi

127
130

133

138

Chapter One

Learning About the Dragon

Using a personal computer is not just a matter of knowing how to write
BASIC. However, there is the problem of what to learn next once you have
mastered BASIC and produced a few simple programs. You could read some
computing theory but in computing it is often difficult to see how theory
relates to practice. It is also very often the case that theory ls dull and
uninteresting until you need to use it. But if you ignore theory until you need it
then it is often too late! This book isn't about theory, however, it is about a
particular computer - the Dragon - and how it works. It explores and explains
the Dragon using essentially nothing more than BASIC.

Rather than starting off from the first principles of computing - binary
numbers, boolean logic and so on - this book shows how the complicated
hardware and software within the Dragon can be used in ways that are not
simply BASIC while at the same time staying within BASIC. The reason for
this emphasis on BASIC is two-fold. Firstly, the Dragon is a BASIC machine.
In other words, unless you do something extra to it, it runs BASIC when it is
first switched on. Secondly, it is possible to discuss many quite complicated
ideas from computing theory and practice using the language that most
programmers learn as their first language.

If you have recently learned BASIC then you may have been told that to go
on to more advanced areas of computing you need to learn another language
- machine code or assembler. While this is true to a certain extent, moving on
from BASIC to assembler or any other language doesn't increase your
understanding of computing - it merely adds yet another language to your list
and if you weren't sure what to do with the first one you won't be any happier
with the second. Computer languages are like theory, they are a lot easier to
learn when you see a need for them! As you progress through this book there
will be many occasions when you will realise how to write a program for some

The Anatomy of the Dragon

particular application. You will be able to see how to do most of it in BASIC
and by seeing what BASIC cannot do for you, you will recognise where its
limits lie and understand the need for �ssembler. In the same way you should
be encouraged to learn a little computing theory as you see how useful it can
be!

What you should already know

To get the most out of this book it is important that you have come to terms
with Dragon BASIC. You do not have to be an expert but you do have to
understand how to write straightforward programs of your own and know
how to use the Dragon manual to find out how unfamiliar commands work.
You won't find any extra explanations of the simpler BASIC commands such
GOTO or IF in this book, but you will find examples of how to use the more
complicated commands and clarification of their meanings. If while reading
this book you find any BASIC that you do not recognise which is used without
an explanation, do not give up, look it up in the manual and broaden your
horizons!

Although much of this book deals with nothing but software there are
many occasions when hardware considerations are important. In most cases
you should be able to understand the hardware descriptions without any
specialised knowledge - the digital circuitry that makes up a computer is no
more difficult to understand than BASIC. However, there are times when
some knowledge of simple electronics is needed to get the full value from an
explanation or an example. Mostly, this knowledge is nothing more than a
rough idea of what a voltage etc is but sometimes it has been impossible to
avoid becoming a little more technical. In this case there is no need to worry
unless the application is something that you are particularly interested in.
Once again you shouldn't be disheartened but instead find a good
introduction to electronics. You find that once you actually need to use
electronics, its really quite an easy topic to understand.

Reading this book you will find that while it answers many of the questions
that you may have about the Dragon, it may also raise questions in other
areas. For example, although you do not have to know anything about binary
numbers you will find that they often play a secondary role in explanations of
the way something works. While such explanations are complete in
themselves they might succeed in showing you how useful an understanding

2

Chapter 1 Learning about the Dragon

of binary numbers is. And knowing how useful something is, is the best
reason for learning about it.

The order of things

It is amusing but true that the best way to read most computer manuals is
from the back! The reason for this is that most computer manuals constantly
make reference to information that will be explained in later sections. It is a
characteristic of computers and computing that understanding something
new adds to your understanding of what you already know. This makes the
sort of explanation that begins with Chapter One and works its way to the
final chapter stage-by-stage very difficult to achieve when the subject is
computing. This is the reason why computer manuals have to be read and
re-read to get the full value from them and so it is with this book. You will find
that some of the earlier chapters mean even more to you once you have read
later chapters. Because of this, and the way that your understanding of the
Dragon and computing in general will develop, that this is intended to be a
book for reading, study and reference. If you are reading a section and find
that you do not understand it fully, don't give up and go back to the
beginning, carry on reading to the end of the section and then re-read it if
necessary. You will often find that by the end of a section your initial
uncertainty will have been cleared up by some other part of the explanation or
via an example. This is advice that I would urge you to follow not only when
reading this book but when reading anything to do with computers.

What is to come

A brief outline of the book will help you to see the connections between the
various chapters.

Our exploration of the Dragon begins with an outline of its hardware in
Chapter 2. The purpose of this chapter is to construct a block diagram of the
machine and a general memory map, both of which are built on and refined in
later chapters.

The Anatomy of the Dragon

Chapter 3 introduces many of the ideas concerned with the Dragon's
graphics display by way of explaining low resolution graphics and text. Some
extra graphics modes that offer a fairly high resolution in nine colours are also
described along with practical examples.

Chapter 4 continues where Chapter 3 left off in pursuit of an understanding
of all of the Dragon's display modes. The standard high resolution graphics
modes are explained and two new ones are introduced. A general discussion
of how to use Dragon graphics brings the chapter to a close.

Chapter 5 explains the Dragon's sound generator. The hardware is
described along with the BASIC commands SOUND and PLAY. The use of
the cassette recorder as a sound source is also discussed and a method for
synchronising external sounds is described.

Chapter 6 is once again about the Dragon's video display. This time the
subject is the main commands that Dragon BASIC provides for graphics and
how they can be used to good effect. Paged animation is described as a way
of making things move smoothly and quickly using nothing but BASIC. The
DRAW command is explored, problems identified and a way of creating
user-defined characters is explained. GET and PUT are explained in detail
including the internal formats used to store graphics information in arrays.

Chapter 7 is about interlacing and is the most hardware oriented of all the
chapters. The use of PI As is explained along with methods of using BASIC for
'bit manipulation'. The major practical topics of this chapter include - the
printer port, the keyboard, the joystick interlaces and the timer. Applications
include a repeat key for BASIC programs, a limited user port and connecting
things to the A to D convertor.

Chapter 8 is about Dragon BASIC and is the most software oriented
chapter. Details of the internal formats used by Dragon BASIC to store data
and programs, are given along with an explanation of how memory is used
and allocated. A variable dump program and a procedure for recovering lost
programs are given and the TAB function is explained.

Chapter 9 is the final chapter but rather than being an ending it takes us on
to new territory in the form of 6809 assembly language. On many occasions
earlier in the book the need for assembly language has limited what has been
possible. The purpose of the final chapter is to explain what assembly
language is and to give an idea of the 'flavour' of assembly language
programming.

4

Chapter Two

Inside the Dragon

The Dragon is a small computer with a lot of interesting features. A
knowledge of its overall design will help you not only to use these features to
good effect but also to understand the reasons behind most of the things that
the manual tells you to do. Once you see that there are reasons why things
work then you will often find new and better ways of using the Dragon. The
only trouble is that an understanding of the overall design involves studying
the 'hardware'. Now if you have been a 'software only' person until this time
then tackling something more than BASIC may worry you. However, if you
have mastered BASIC then you should be perfectly able to understand the
hardware descriptions in this chapter.

The Dragon is different from many other personal computers in that it uses
an advanced and very powerful microprocessor - the 6809 - designed and
manufactured by Motorola. This isn't the only advanced product from
Motorola that has found its way into the Dragon. In particular, the graphics­
text, low and high resolution - are produced by a 6847 video generator, the
sound, cassette, printer and joystick interfaces are provided by two 6822
Peripheral Interface Adaptors and the overall working of the separate parts of
the Dragon are synchronised by a 6883 Synchronous Address Multiplexer
(SAM). It is true to say that the internal workings of the Dragon owe so much
to Motorola that if Motorola didn't exist neither would the Dragon I

Much of the detail of the operation of Dragon is described in specific
chapters in the rest of this book. For example the video generator is described
in the chapters on graphics and the way that a 6822 PIA is used to produce
sound effects is described in the chapter devoted to Dragon sounds. As these
finer details are missing from the picture of the Dragon given in this chapter
you shouldn't be too worried if you feel that you don't understand everything.
The purpose of this chapter is to start the ball rolling with a general description

The Anatomy of the Dragon

of the machine. The whole picture is something that you will only appreciate
when you have read ·all the chapters in this book and used some of the
information they contain. The main aim of this chapter is to build up a block
diagram of the Dragon's hardware that can be used in later chapters to see
how the more specialised descriptions fit into the entire machine. As a spin off
from the process of building up a block diagram, we will also construct a
memory map of the Dragon showing where all the areas of interest are
located and roughly what each is used for.

The Dragon as a computer

There are certain features that all computers have in common and the
Dragon is no exception. The basic anatomy of any computer can be seen in
Fig 2.1. The Central Processing Unit (CPU) is usually considered to be the

MEMORY
ROM+ RAM

CPU

Input/ Output
Keyboard, Video,

printer etc.

Fig 2.1 The parts of a Computer

6

Chapter 2 Inside the Dragon

most important and interesting part of a computer in that it is responsible for
carrying out the instructions contained in any program. As you might guess,
in this role the CPU mainly affects the speed that your programs run at and
unless you want to get involved in assembly language programming, this is
the only way that the CPU makes itself felt to the average user. (For more
information on assembly language, see Chapter 10 .) However, it is
comforting to know that the CPU inside the Dragon is a very fast and
sophisticated device - the Motorola 6809. If you are contemplating learning or
using assembly language then the 6809 is one of the best to use and, on the
other hand, if you are only interested in running BASIC programs then the
6809 will not let you down from the point of view of speed.

The second major part of any computer is its memory. Memory comes in
two distinct types, RAM and ROM. ROM (Read Only Memory) is used to hold
information that never changes. Within the Dragon its main function is to
hold the program that implements the rules of BASIC - that is the BASIC
interpreter. This is stored in two SK ROMs making a total of 16K of ROM
storage. The uses that RAM ! Random Access Memory) is put to are very
much more varied. Within the Dragon RAM is used to hold the text of a
BASIC program, any variables, strings and arrays that the BASIC program
may use and a large amount of RAM can be used up to store the information
used to produce the video display. The Dragon comes equipped with 32K of
RAM and although this sounds like a lot it can be used up by some graphics
modes and large arrays. Physically the RAM is supplied in the form of eight
4864 dynamic RAM chips. To a certain extent this information is of academic
interest only because, although the Dragon has been designed to take smaller
16K chips as well as the 32K chips it is supplied with, it is difficult to think of a
reason for wanting to swap them.

A point of interest is that that the Dragon uses 'dynamic' RAM chips. In fact
RAM chips come in two different types - static and dynamic. Static RAM
chips are the simplest to use in a computer because they retain whatever
information is stored in them as long as the power is supplied without any
extra attention. However, static memory chips are expensive and not
available in very large capacities. Dynamic RAM chips on the other hand are
more trouble to use but they are cheap and 32K of memory can be supplied in
just eight chips. The reason why dynamic memories are so much extra trouble
is that unlike static RA Ms they have to be kept continually active to retain the
information stored in them. Put simply this activity takes the form of con­
tinually reading every memory location - this is called 'refreshing' the memory
- and it is the need for refreshing that complicates the use of dynamic RAM. In

7

The Anatomy of the Dragon

most computer systems the use of dynamic RAM involves a whole collection
of extra chips to look after refreshing. In the Dragon this operation is taken
care of by a single chip, the SAM (Synchronous Address Multiplexer), more
of which later.

The CPU, any other device using the memory, and both RAM and ROM
need to be connected to two 'system buses' - the address bus and the data
bus. (A 'bus' is simply a group of connections that can be though of as serving
one purpose within the computer.) The address bus is used to select one of
the many memory locations numbered from location O to location 65535. If
you are familiar with binary numbers you will know that this range of numbers
needs 16 bits to represent it and so the address bus has to have 16 different
connections, one for each bit. The data bus is different from the address bus
in that information can pass in both directions, from the memory during a
read operation and to the memory during a write operation. For this reason
the data bus is said to be 'bi-directional'. Each memory location can hold a
number in the range 0 to 255 and this corresponds to a binary number with
eight bits, or one byte. Thus to transfer data to and from the memory requires
a data bus with eight different connections, one for each bit. These two
system buses thread their way through the Dragon connecting any two
components that either need to received an address or need to send or receive
data. There is in fact a third bus that threads its way though the Dragon along
with the data and address bus - the control bus. This is a collection of
connections that do a wide range of different jobs concerned with controlling
the operation of the machine. For example, one of the connections is used to
decide if a memory operation will be a read or a write. The control bus is
something that is better described as and where it is crops up.

The third part that all computer have in some for of another is input/ output.
In the Dragon the main input/output is via a keyboard and standard TV
screen. As well as these two major methods there are a number of other more
specialised ways that information is passed in and out of the Dragon - the
joystick interfaces, the cassette interface, the sound channel and the printer
interface. The only one of the input/output devices to affect the overall
working of the Dragon is the TV display and this deserves a section all to itself.

The TV display

To understand the workings of the Dragon's TV display we first have briefly
to examine the way that a typical computer produces its TV display -just to be
in a position to appreciate how clever the 'Dragon is in doing it better! Without

8

Chapter 2 Inside the Dragon

going into too much detail, the elements of a standard video system can be
seen in Fig 2.2. This method of producing a video display is called 'memory

address
bus

C.P.U.

Video RAM

data
bus

address
bus

Video
generator

TV
Signal

Fig 2.2 A Standard Video System
mapping'. The principal idea is that there is a special area of RAM, the 'video
RAM', that is shared by the CPU and by another device, the 'video
generator'. In early systems the video generator was the name given to a
whole collection of chips which were necessary to produce any sort of TV
picture. However, these days all of the functions originally carried out by this
collection of chips can be carried out by a single device. The video generator
has two things to do, firstly it must produce all the timing signals that a TV set
needs to display a steady picture and secondly it must read the video RAM
and use the information contained in it to display the correct patterns on the
screen. The generation of the timing signals causes no real problems. All that

The Anatomy of the Dragon

is required is a pulse marking the beginning of each TV frame - the 'frame
pulse' or 'frame sync' - and a pulse to mark the beginning of each scan line -
the 'line pulse' or 'line sync' - see Fig 2.3. The real problem lies in the need for
the video generator to access the video RAM for information about the screen
display. As this portion of RAM is also used by the CPU to store, and hence
alter, what is being displayed on the TV you might be able to guess that the
trouble lies in deciding which of the two devices, CPU or video generator, is
using it. This synchronisation problem is often ignored by the designers of
personal computers with the result that the display tends to show random
'sparkles' as the CPU and the video generator compete for the memory.

frame
pulse

Fig 2.3 TV Signal

The solution adopted by the Dragon is to use a video generator chip, the
MC6847, in conjunction with the SAM chip already mentioned. The SAM
chip not only refreshes the dynamic RAM as described in the last section, it
also determines which of the CPU and video display chip can gain access to
the memory. In fact the SAM chip is the only device in the Dragon that is
allowed to control the memory. When the CPU needs to access the memory
the SAM chip is responsible for taking the address from the CPU and either
storing or retrieving the data. The arrangement of the three most important
chips in the Dragon, the 6809 CPU, the 6847 video generator and the 6883
SAM can be seen in Fig 2.4. There is only one problem. As there is no address
bus connecting the video display chip with the memory, how does it manage
to retrieve data at the correct time and in the correct order. The answer is
somewhat surprising. The SAM chip mimics .the operation of the video
generator and automatically produces the necessary data to the video
generator. At first this may sound like a very complicated and round about
way of doing things. Its advantages are that the Dragon can be made quite a

10

CPU

6809

address

bus
SAM
6883

Video Generator
6847

Chapter 2 Inside the Dragon

Dynamic
RAM

TV
Signal

Fig 2.4 The 6809, 6883 & 8647 as a video system

lot simpler in terms of its construction by not having to run 1 6 address lines
between the memory and the video generator and the SAM chip can make
sure that the CPU and the video generator never try to use the memory at the
same time. The crudest way of keeping the video generator and the CPU out
of each other's way is to stop the CPU from doing anything during the time
that it takes to display a TV picture. If your realise how much this would slow
the Dragon down you will be relieved to hear that this is NOT how the SAM
chip solves the problem! Instead what happens is that the CPU and the video
generator are each given an opportunity to access memory alternately. This
scheme is particularly economical because the time that the video generator
is given couldn't be used by the CPU anyway. This interleaving of the CPU
and video generator is entirely the responsibility of the SAM chip, see Fig 2.5,
and is one of the reasons that the Dragon's video display is flexible without
losing any of the CPU's innate speed.

1 1

The Anatomy of rhe Dragon

CPU CPU

____,I I I I..,___ IE Clock]

Video Video Video

Fig 2.5 The interleaving of memory access

One of the disadvantages of using the SAM chip doesn't really show itself if
you just use the Dragon according to the manual. As mentioned earlier, to
make sure that the video generator chip gets the data it needs at the time that
it needs it the SAM chip has to mimic its functioning. What this means is that
if you instruct the video generator chip to change to a different graphics mode
you have to remember to tell the SAM chip about it. This is normally taken
care of by the Dragon's BASIC interpreter and so there is no need to worry
about this complication. However, there are graphics modes that can be
produced by the 6847 chip that Dragon BASIC doesn't mention and some of
these modes are very useful! To use these extra modes it is obvious that you
have to set the video generator but what might have escaped your notice is
that the SAM chip also needs to be set to the same mode. The details bf the
SAM chip and the video display chip can be found in Appendix I but it is
better to wait until they are needed in Chapter 3 before looking at them.

The PIAs - input/ output

The Dragon is very definitely a 'big chip' machine! We have already seen
how both the video generator and the SAM are large chips that replace the
collections of small chips found in other machines. There are two other large
chips in the machine and both of them are 6821 PIAs from Motorola. PIA
stands for 'Peripheral Interface Adaptor' but this doesn't really convey what
the chip does. A PIA is in fact a general purpose input/ output device and each
PIA within the Dragon provides 20 connections that, subject to some
restrictions, can be used either as inputs or outputs. A PIA is usually thought
of as two groups of connections called the A side and the B side. The A side

12

Chapter 2 Inside the Dragon

consists of a group of eight 'data lines' usually named PAO to PA7 and two
control lines called CA 1 and CA2. The data lines can act as either inputs of
outputs and can be treated by a programmer rather like a normal memory
location. That is, there is a memory location within the Dragon that
corresponds to the A side of the PIA and writing to it alters the output lines
and reading from it returns the current state of the input lines. If this seems a
little complicated it will be easier to understand after some practical examples
in Chapters 5 and 6. The two control lines CA 1 and CA2 are a little more
complicated to handle than the data lines and details will be left until later.
However, CA 1 can be used as an extra input and CA2 can be either an extra
input or an extra output. The B side of the PIA is almost identical to the A side
and provides eight data lines called PBO to P87 and two control lines CB1 and
CB2, (see Fig 2.6).

CB2
CB1

PBO to PB7

6821
P . 1 .A.

PAO to PA7

CA2
CA1

Fig 2.6 The 6821 P.1.A.

13

The Anatomy of the Dragon

PIAs are very useful in that they allow a machine to communicate or
interface with the outside world and many personal computers provide spare
PIAs for the user to have fun with. These PIAs are often called 'user ports'.
You probably already know that the Dragon doesn't have a user port so you
might be wondering what it is doing with the two PIAs inside it and how we
can go about connecting things to the Dragon. The answer to the first part of
the question is that PIAO looks after the keyboard and provides the parallel
printer interface and PIA 1 handles the cassette interface, part of the printer
interface, the sound output, the joystick inputs and various other things that
will be discussed later! Although the two PI As are fully occupied with 'internal
duties' it is possible to make the parallel printer interface do things that it was
never intended for!! In other words the printer interface can be pressed into
service as a restricted user port. Another good reason for learning a little
about the workings of the PlAs is that many of the Dragon's internal facilities
that are controlled by the PIAs can be extended and modified. For example,
one of the more irritating shortcomings of the Dragon is its lack of a repeat
key. Knowing how PIAO reads the keyboard makes it possible to read the
keyboard directly and provide a repeat key. All in all the PI As are two very
important components from the user's point of view. The details of the 6821
PIA can be found in Appendix I along with the SAM and video generator but
once again it is better only to look at this appendix as and when it is required in
reading later chapters.

A complete block diagram of the Dragon

Now that we have made the acquaintance of the most important
components in the Dragon and looked briefly at their inter-relationships it is
possible to construct a block diagram of the machine, Fig 2.7. You should be
able to identify the chips that we have been discussing and know roughly
what the6809 CPU, the RAM and ROM, the SAM, the 6847 video generator
and the two PI As are doing. You should look very carefully at the data bus and
the way that it connects the various components together. Notice the
address bus and the way that it is intercepted by the SAM chip - the reason for
this was explained earlier. The only device that hasn't been discussed earlier is
the modulator. The only function that this device performs is to change the
video and sound signals into a modulated UHF signal suitable for reception by
a domestic TV set. The details of the 1/0 devices such as the sound generator
and the cassette interface will be dealt with in later chapters. For the moment
all you should concentrate on is understanding the overall configuration of
the Dragon - the practical details are yet to come!

14

expansion
connector

data

Dynamic
RAM 32k

SAM
6883

ROM
1 6k

data

address

Fig 2.7 A Block diagram of the Dragon

Sound
generator

cassette
interface

printer
interface

joystick
interface

9
{l

"'

f
ii-
"'�

The Anatomy of the Dragon

The memory map

Although the system block diagram is important to a certain extent, from
the programmer's point of view the system memory map is even more
important. For while the block diagram shows you what is IN the machine the
memory map tells you WHERE things are. Every device inside the Dragon that
is either connected to the address bus or to the SAM chip has a range of
addresses that it responds to. If you want to write programs that make use of
these devices then it is obviously necessary to know the addresses that they
respond to. The only complication is that addresses within computers are
normally specified in 'hexadecimal'. If you don't know about hex numbers
then don't worry because the only important thing to know is that in hex we
count from zero to 1 5 before incrementing the next digit. As the decimal
system only provides ten digits0 to 9 we have to invent five new ones to get to
15. Conventionally the letters A to F are used. So counting in hex goes -
hex = 0 , 1 ,2,3,4,5,6,7,8,9, A, B, C, D, E, F, 1 0 , 1 1 , 12 ... l F,20 ..
dee = 0 , 1 ,2,3,4,5,6,7 ,8,9, 10 , 1 1 , 12, 13, 14, 15 , 16, 17, 18 ... 3 1 ,32 . .
I f this seems complicated then take heart because your Dragon will convert
any decimal number to hex and any hex number to decimal without any
effort. After all what else are computers for! To convert to hex simply use the
HEX$ function as in

10 INPUT X
20 PRINT X;"IN DECIMAL = ;"HEX$(X);"IN HEX"
30 GOTO 10

If while reading this book or writing a program you want to know what a
decimal number is in hex then type PRINT HEX$(x) where x is the decimal
number in question in direct mode to your Dragon. The problem of converting
hex to decimal is even less troublesome because, although the manual
doesn't mention it, your Dragon will accept hex numbers as well as decimal
numbers. To signify that a number is hex all you have to do is to write &H in
front of it. For example PRINT 100 will print '100' on the screen but PRINT
&Hl00 will print '256' on the screen because &H100 is taken to be a hex
number which is converted to decimal before being printed out. To see what
the decimal equivalent of any hex number is try -

10 INPUT A
20 PRINT A
30 GOTO 10

If you type a decimal number into this program then it will print the same
number out but if you type a hex number, &HFF for example then it will

1 6

Chapter 2 Inside the Dragon

convert it to decimal and then print it out. If you want to know the decimal
equivalent of any number while you are writing a program then just enter

PRINT &Hx
in direct mode where x is the hex number that you want converted. In general
however, there is no need to convert hex to decimal for use in programs
because Dragon BASIC will allow you to use a hex number wherever you
could use a decimal number. (From now if there is likely to be any doubt, a hex
number will be written with &H in front to make sure that it is not mistaken for
decimal.)

You might be wondering why hex is used at all. The first reason is that large
decimal numbers are difficult to remember and hex numbers use fewer digits
than decimal. For example the hex address C000 is 49152 in decimal. The
second reason for using hex is that computer addresses tend to be either
powers of two or at least multiples of two and such numbers look particularly
simple in hex. (There is a third reason for the general use of hex, it is easier to
convert to binary, but this need not concern us here. l

The general system memory map can be seen in Fig 2.8. The lower half of
the addresses correspond to RAM which is used for a number of different
purposes including storing any lines of BASIC that you might write. A more
detailed map of RAM use can be seen in Fig 2.9 and this will be discussed in
the coming chapters. The BASIC RO Ms and the cartridge RO Ms take up 24K
of memory and there is not much more to be said apart from pointing out that
there are some machine code routines within the BASIC ROMs that are
occasionally useful. The most interesting area of the Dragon is to be found in
the top SK of the memory map. This corresponds to the 1/0 device area and is
where the SAM, video generator and the PIAs can be found. This area will be
explored in detail later but a closer view of this area can be seen in Fig 2.10.

The memory maps presented in this section start us out on the road of
exploration - they tell use where things can be found. Once we know where
they are the next step is to discover what to do with them.

1 7

The Anatomy of the Dragon

64 FFFF

I / 0 devices + vectors -

E000

-- Cartridge ROM
r-

Bk

48 cooo

r- BASIC ROMS A000
16k

32 8000

I- � 6000

1 6 � RAM
r-

32k
4000

-- i- 2000

0000
Fig 2.8 General system memory map

18

3600

3000

2AOO

2400

Bk

1 EOO

1 800

1200

coo

600

400

0

32k

j�

-

-

-
-

-

-

Program + Variable
Storage

Page 8 1 ½ k

Page 7 1 ½ k

Page 6 1 ½ k

Page 5 1 ½ k

Page 4 1 ½ k

Page 3 1 ½ k

Page 2 1 ½ k

Page 1 1 ½ k

Text screen ½ k

System user 1 k

Fig 2.9 RAM use

19

Chapter 2 Inside the Dragon

32k

-

-

-

-

3400

3000

2COO

2800

2400

2000

, coo

1800

1 400

1 000

coo

800

400

000

The Anatomy of the Dragon

RESET VECTORS

SAM CHIP

PIA 1

PIA 0

FFFF

FFF0

FFDF

FFC0

FF23

FF20

FF03

FF00

Fig 2.10 Memory Map of the 1/0 area

20

Chapter Three

Text and Low Resolution Graphics

In this chapter we look in detail at the way that the 6847 video generator
produces the Dragon's range of text and low resolution graphics modes. The
reason for looking at this isn't just idle curiosity, although there is much of
interest, it is a way of expanding the Dragon's range of graphics modes. It
may come as something of a surprise to learn that the Dragon has even more
graphics modes than BASIC offers but it's true! A second reason for looking
at the way the display works is that it helps to understand some of the
unexpected behaviour of the Dragon's low resolution graphics. Some of the
details of how things work are a bit technical - after all the Dragon is a
complicated machine - so you will probably have to read this chapter a few
times before you really grasp everything that it explains. It is certainly worth
making the effort to understand how your Dragon works, because by
understanding it you stand a better chance of inventing new ways of using it.
However, if for the time being you just want to use the techniques described
then you can always skip the explanations and look at the summaries within
the technical sections and go straight on to the sections that deal with 'using'
the features discussed.

The display modes

The Dragon's video generator can work in three distinct ways, giving rise to

- alphanumeric modes
- semi-graphics modes
- full graphics modes

21

The Anatomy of the Dragon

The three modes differ in the way that they interpret the data stored in
memory (and sent to the video generator by the SAM chip) . In alphanumeric
mode each byte of data corresponds to the code of the character to be
displayed. The exact dot pattern of the character (i.e. its shape) is obtained
from an area of memory inside the video generator.

In the semi-graphics mode each byte of data contains information about
whether or not a point on the screen should be 'on' or 'off' and additional
information about what colour 'on' points should be. The reason that this is
called a 'semi-graphics' mode is that it is not possible to control the colour of
every point independently. A byte of information will set a group of points
'on' or 'off' and set all the 'on' points to the same colour. Points that are 'off'
are always black and unfortunately this is something that cannot be changed.

The full graphics modes are much easier to use than the semi-graphics
modes because each byte of information directly controls the colour of a
group of points. ln other words, points are not 'on' or 'off', they are simply
assigned a colour. This means that you can assign a colour to any point
without worrying about affecting the colour of any other point.

These descriptions of the three different modes will make more sense after
you have had some practical experience of each one in this and the following
chapter. However, before moving on to software it is necessary to look at the
way that the 6847 video generator chip can be made to change its display
modes.

The 6847 video generator

If you look back at the system block diagram given in Chapter 2 you will see
that the video generator is not connected to the address bus. As has already
been explained, this is not a problem as far as getting display data to it is
concerned because the SAM chip addresses the memory on the video
generator's behalf. However, it does cause something of a problem when it
comes to giving commands to the6847 to set its mode of operation. Without
being connected to the address bus, how can the video generator know that
the CPU is sending data to it in particular. The answer to this problem is that
the 6847 chip has a number of input pins that can be used to set its mode of
operation. Instead of these pins being permanently wired to give a fixed mode
they are connected to output lines of PIA 1, one of the two PIAs discussed in

22

Chap·ter 3 Text and Low Resolution Graphics

Chapter 2. The control pins of the video generator can be seen in table 3.1
along with other information that will be explained as we go along.

Table 3.1

The 6847's control pins

Pin name controlled function
no. by

39 css PIA1 PB3 selects one of the two colour sets
30 GMO PIA1 PB4 graphics control line 0
29 GM1 PIA1 PB5 graphics control line 1
27 GM2 PIA1 PB6 graphics control line 2
35 A/G PIA1 PB7 alpha·numeric/ graphics select
34 A/S data b7 alpha·numeric/semi·graphics select
32 INV data b6 invert alpha·numerics
31 INT as GMO internal/external character ROM

/EXT

The meaning of this table will become clear as we examine the different
display modes of the video generator chip. All that needs to be clear at this
time is that these control pins are the only way to give the video generator chip
instructions about what mode is required and some of these pins are
connected to the B side of PIA 1. We will find out how to change the state of
the PIA as the need arises later in this chapter.

Setting SAM
Now that we have some idea of how to set the mode of the video generator

chip we can go on to find out how to set the SAM chip to the same mode. This
is necessary, you will recall, because the SAM chip has to mimic the
operation of the video chip to produce the correct data at the correct time.
This is indeed the normal operation of the SAM chip but by setting it to one
mode and the video chip to another we can create a few completely new
graphics modes. It is difficult to describe exactly how mixed mode operation
works, but roughly speaking the SAM chip can be made to send more data to
the video chip than strictly necessary and so produce a higher resolution.

The SAM chip is connected to the address bus which it uses to control the
memory and to accept commands from the CPU. It does this by recognising
addresses from FFCO to FFDF as reffering to itself. That is, any use of an

23

The Anatomy of the Dragon

address in this range will change the way the SAM works. The exact details of
the way that the SAM is affected are rather odd and certainly no other device
in the Dragon is controlled in quite the same way. The addresses that the
SAM uses are best thought of in pairs such as FFCO and FFC1, FFC2 and
FFC3, i.e. an even address and an odd address. Each pair of addresses
controls one aspect of the way the SAM works. If you write data to the even
address of the pair the particular aspect concerned is turned off and if you
write data to the odd address it is turned on. Notice that it doesn't matter what
data you write to the address it is simply the fact that you used the address
that the SAM chip notices. Each pair of addresses can be thought of as a
switch with the even address corresponding to 'off' and the odd address
corresponding to 'on'. As you probably know, in computing 'off' can be
represented byO and 'on' by 1, This leads to another way of talking about the
way the even and odd addresses work - you can say that even addresses 'set'
the function, while odd addresses 'clear' them or set them to zero. If you look
at Appendix I, you will see a complete list of the address pairs and a brief
description of what they do. Within the Dragon, many of these conditions of
operation cannot be changed and so they are of little interest to us. From the
point of view of the graphics modes there are only three address pairs that are
used and they are -

Address pair
(clear/set)
FFCO/FFC1
FFC2/FFC3
FFC4/FFC5

name

VO
V1
V2

Which mode the SAM will run in depends on which combination of VO to V2
are set and which are cleared. Details of how to set up a particular mode will
be given later.

It is worth summarising what we have learned so far. Firstly , the video
generator is controlled by some of the output lines of PIA 1. Secondly, the
SAM chip's mode is set by writing to odd or even addresses in the range FFCO
to FFC5.

Text and inverted text - POKEing the screen

After so much theory it is time to look at perhaps the simplest Dragon
display mode - text and inverted text. Whenever you switch the Dragon on

24

Chapter 3 Text and Low Resolurion Graphics

the video display chip and the SAM chip are set to produce a text display. The
BASIC command SCREEN 0 ,c will also set a text display with either black on
green, if c is 0 , and black on orange, if c is 1 . As text mode is so easy to get
into, there is not too much point in explaining in detail how to set the video
chip and the SAM to produce it. (It is, however, included in Appendix 1 1.)
What is worth looking at is the way the data in memory produces characters
on the screen. Generally, the most important things to know are what you
have to store in a memory location to produce any given character on the
screen and which memory location you have to store it in to make it appear at
a given position.

The data for the text screen display is normally stored starting at address
&H400 and going up to 5 FF. The number stored in each memory location
determines what is displayed on the screen within one character location. As
there are 32 character locations on 1 6 lines you can see that this implies that
there are 512 memory locations used for the text screen, which is indeed true.
Which character is displayed is actually determined by just the first six bits of
the contents of the memory and as each location can store a number
consisting of eight bits the question is: what are the remaining two bits used
for? Bit 6 (notice that this is the seventh bit as we number bits starting from
zero) is in fact used to select between two distinct text display modes -
inverted and non-inverted. If you look back at table 3 .1 you will see there is a
pin called INV and that it is controlled by 'data b6'. When bit six is 1 the
characters are displayed 'inverted' which corresponds to black on green, i.e.
the normal way that characters are displayed. However, if bit six is 0 then a
character will be displayed green on black, i.e. the way they are following
SHIFT 0. Most computers store ASCII codes in their video memory to
determine which character will be displayed. That is, to display a letter on the
screen the corresponding memory location would have the letter's ASCII
code stored in it. However, the Dragon is a little more complicated than this.
So it is worth examining not only the way that each memory location
corresponds to a screen location but the way the number stored in it
determines which character is displayed on the screen. Try the following
program

10 INPUT A$
20 FOR I = &H400 TO &H5 FF
30 POKE I,ASC(A$)
40 FOR J = 1 TO 100:NEXT J
50 NEXT I
60 GOTO 10

25

The Anatomy of the Dragon

This program will POKE the ASCII code of any letter into every location in the
screen memory. Line40 is a delay loop so that you can see what happens. You
can learn two things by watching this program. Firstly the letter that appears
in every location is not always the same as the letter you type into A$ - for
example try '*' or the number 1 . Sometimes the characters appear on the
screen the opposite way round to the way you typed it, i.e. it appears green on
black. If you try entering characters after pressing SHIFT and O to get into
'lower' case you will be even more confused. Now when you type in letters,
what you see on the screen are numbers or symbols! This apparently
confusing display is easy to understand when you remember that, as already
described, the Dragon interprets bit 6 of every memory location as an
invert/non-invert instruction. The trouble is that ASCII uses bit 6 to
distinguish numbers from letters and bit 5 to distinguish upper from lower
case characters. You should be able to see that to make all upper case
characters, digits and symbols display in inverted mode and all lower case
characters display in non-inverted mode, something other than the ASCII
code will have to be stored in memory. For example, if you POKE the ASCII
code for the letter A to a memory location then the actual number that you
store is 65 in decimal or 01000001 in binary. Now if you look at this binary
number you will see that bit 6 is a one and this means that the character will be
displayed in inverted mode. The remaining six bits are 000001 and these
determine which character will be displayed on the screen. In other words
storing 000001 or 1 in decimal determines that the letter A will be displayed
and depending on the state of bit 6 it will either be inverted or non-inverted. If
bit 6 is a O then it will be displayed non-inverted and this is what the Dragon
displays for a lower case A. If you have followed this complicated description
you will see that although the ASCII code for a lower case A is 97 in decimal
you have to POKE the screen with a 1 to produce an inverted A and this is a
long way from the ASCII code for lower case A.

Whenever you PRINT a character to the screen the Dragon automatically
carries out a conversion from the ASCII code that the keyboard produces and
that BASIC uses to a display code that is stored in the screen memory. Rather
than give a table showing how ASCII can be translated to this display code it is
more useful to give a number of rules for conversion -

IF ASCII< 64 THEN CODE= ASCII + 64
IF ASCII> =64 AND ASCII< =96 THEN CODE = ASCII
IF ASCII> =96 AND ASCII< = 128 THEN CODE= ASCll-96

Where ASCII is the ASCII code for a character and CODE is the number that
has to be POKED to the screen to display it. Notice that not all the ASCII

26

Chapter 3 Text and Low Resolution Graphics

codes recognised by the Dragon correspond to something printable on the
screen - for example the cursor control codes will not appear on the screen.
One other interesting point is that there are display codes that correspond to
ASCII codes that the keyboard cannot produce. For example how do you
display green on black digits. The keyboard doesn't produce ASCII codes for
'lower case digits' because such a thing doesn't make sense I But if you POKE
codes between 48 and 57 you will see green on black digits. The reason for
this is that if a code produces an inverted character then subtracting 64 from it
will produce a non-inverted character even if the keyboard will not produce an
ASCII code for it. This is because in this case subtracting 64 is the same as
setting bit 6 to zero. {In the example given above the display code for inverted
0 is 112 and 112-64 gives 48.)

All this makes using the Dragon's text screen directly either by POKEing it
from BASIC or from machine code a little more difficult than you might
expect.

To summarise, the Dragon handles characters in BASIC and from the
keyboard in the standard computer code, ASCII. When a character is
PRINTed to the text screen the ASCII code is changed so as to make lower
case characters display in non-inverted mode (green on black) and upper case
characters, digits and other symbols display in inverted mode (black on
green).

Now that we have the intricacies of the Dragon's display code sorted out
we can turn our attention to the way that each memory location corresponds
to each screen position. Looking back at the screen POKE program you
should be able to see that the letter fills the screen from left to right and
moving down. In fact in the same order as used to number printing positions
by the PRINT @ statement. If you want to POKE a character whose display
code code is d to column x and row y use -

POKE x + 32'y+ &H400,d
At this point it might be a good idea to tackle a small practical problem. The

following short program reads characters in from the keyboard using the
BASIC command INPUT and then displays them on the screen but without
using the BASIC command PRINT.

10 X = O
20 Y = O
3 0 INPUT A$
40 FOR I= 1 TO LEN(A$)

27

The Anatomy of the Dragon

50 A = ASC(MID$(A$,I, 111
60 IF A< 64 THEN C = A + 64
70 IF A> = 64 AND A< = 96 THEN C = A
8 0 I F A> = 96 AND A< = 128 THEN C = A-96
90 POKE &H400 + X + 32*Y,C

100 X=X+ 1
110 1F X> 31 THEN Y = Y + l : X = O
120 NEXT I
130 IF X< > O THEN Y = Y + 1
140 GOTO 3

This short program is in fact a BASIC version of what happens in machine
code when you use the PRINT command. You should be able to follow the
way that the printing position is moved on by one after each letter is printed
and the way that the ASCII code of each letter is changed to a display code.
The program works for all characters both upper and lower case but it doesn't
handle control codes such as ENTER and it doesn't scroll the screen once it is
full.

At this point you may be wondering how the video generator converts a
display code, which certain_ly doesn't carry any information about the shape
of the letter that has to be displayed on the screen. The answer is that there is
a chunk of ROM inside the video chip that stores the dot shapes of all of the 64
characters that the Dragon can display. If you go back and look at table 3 .1
you will see that there is a control pin called INT /EXT. What this does is to
make the video chip use either its internal character definitions or an external
RAM or ROM chip. This could obviously be used to give the Dragon upper
and lower case characters but the modification would involve unsoldering the
video chip and connecting all its unused address lines to an external character
generator - this is for expert experts only!

The only question left unanswered is - what the eighth bit in the video data is
used for. Once again looking back at table 3 .1 shows that bit 7 is connected to
the A/S pin. The A/S pin changes the display mode from alphanumeric to
semi-graphics which forms the subject of the next section. If bit7 is zero then
the data is displayed in text mode {inverted or non-inverted according to bit 6)
as a character. If bit 7 is a 1 then the data is not translated to a character but is
used to determine the colour of four small squares that occupy the same
space on the screen that a character would. You should recognise this
semi-graphic mode as Dragon low resnlution graphics. It is the use of bit 7
that allows text and low resolution graphics to reside on the screen at the

28

Chapter 3 Text and Low Resolution Graphics

same time - the video chip changes mode as it goes along according to the
value of bit7. In fact, if you think about it the Dragon's text screen isa mixture
of three distinct video generator modes - alphanumeric inverted,
alphanumeric non-inverted and semi-graphics!

Summary

1 l The Dragon's screen memory is organised in such a way that if you want a
character to appear at column x and line y you should POKE its display code to
location x + 32*y + &H400

2) Format of a byte of data used in text mode is-
b7 b6 b5 b4 b3 b2
! 0/1 / 0/1 / character display code
I \

0 = text O = non-inverted
1 = semi- 1 = inverted
graphics

Low resolution graphics

b1 bO

If bit 7 of the contents of a screen memory location is set, the following
seven bits of data are not interpreted as a text code. Instead the next three bits
are used to define the colour of the character location and the last four bits
determine the state of each of four small squares within the character location
- i.e. whether it is 'on' or 'off'. ln other words, the formats of the data and of
the screen display are-

character
location

�
b7 b6 b5

/ 1 / C2 / c,

data
format

b1
L1

bO
LO

The bits LO to L4 determine which of the squares are 'on' and which are 'off'.
For example, if LO is 1 then the square marked LO is 'on', if LO is0 then itis 'off'
and so on. The colour bits, C2 to CO determine the colour of each of the
squares that are 'on' in the following way

29

The Anatomy of the Dragon

C2 Cl co n Colour
0 0 0 0 Green
0 0 1 1 Yellow
0 1 0 2 Blue
0 1 1 3 Red
1 0 0 4 Butt (White)
1 0 1 5 Cyan
1 1 0 6 Magenta
1 1 1 7 Orange

If you look at the column labelled n then you will probably notice that n is
one less than the the colour code used in many of the low resolution
graphics commands, it is also the decimal equivalent of the three bits
C2-C0 if they are read as a single number. Any of the squares that are
'off' show up as black on the display.

What this means is that within any character location any of the four
squares can be set to 'on' or 'off'. All the 'on' squares are displayed in the
colour given by CO to C2 and all of the 'off' squares show as black. This
obviously places some limitations on the way that low resolution graphics
can be used.

Using low resolution graphics

From a consideration of the data format used for low resolution
graphics, or simply from experimentation, it is not difficult to discover
that any particular character location cannot show more than one colour
and black. The low resolution graphics commands SET and RESET,
however, do not make this restriction at all clear. For example, the
command

SET(x,y,c)
where x, y is the co-ordinate of the point and c is the colour you would
like it to be set to, leads you to believe that you can SET any point on the
low resolution graphics screen to any of the eight possible colours. What
it doesn't tell you is that:

30

Chapter 3 Text and Low Resolution Graphics

if the point is currently within a text character then SETting it will
produce three 'off' or black points around it

if the point is currently part of a low resolution graphics block then all of
the other 'on' points will change to its colour.

This means that that there are only two ways to use low resolution graphics
without odd effects -

1) SET all the squares with in a character block all 'on' and to the same colour
or all 'off'. This effectively reduces the resolution of the screen to32 by 16 but
does give a true nine colour display.

2) Work with a black background (i.e. use CLS 0) and accept the limitation
that you can only have one colour within each character block.

The first approach is not really that useful apart from very low resolution
games, histograms and kaleidoscope-type patterns. If you intend to use the
low resolution screen in this way then then it is much better to ignore the SET
and RESET command in favour of using PRINT @ with the graphics
character codes described below.

The second approach does give the sort of resolution that is useful but the
problem lies in writing your program so that it doesn't try to set more than one
colour per character block. Once again, if at all possible, it is better to work
with PRINT @ and graphics character codes. An alternative procedure is to
use the POINT command to find out what colour is already present at the
location but this will mean checking not only the point about to be plotted but
the three other points that make up the character block. A better solution is to
define a function that will check the screen character location to find out what
colour is set and if any points are on.

DEF FNCI MJ - INTIPEEKIMJ/16 I-7
DEF FNO(M) - PEEKIMJ AND 15

The first function FNC will return the colour code of the character location
stored in memory location M. The way that it works is to use PEEK to retrieve
the contents of memory location M, then 'get rid of' the first four bits of the
number by dividing by 1 6 and taking the INTeger part. Finally it removes bit7
by subtracting 8 and converts the code to the standard Dragon colour codes
by adding 1 . If you don't follow this explanation then write down an eight bit
binary number and try it! The second function will return a number that is

31

The Anatomy of the Dragon

related to how many of the low resolution graphics points are on. More
importantly, it returns 0 if no points are on. It works by PEEKing the memory
location and then using the AND function to remove all the bits other than the
first four. The use of the AND function in this way will be explained in detail in
Chapter 9. Both of these functions will only work if the character location isn't
in text mode but text mode can be recognised by the first function returning a
negative number. You don't have to understand how these functions work to
make use of them and as an example consider the low resolution
kaleidoscope program given below -

10 CLS 0
20 DEF FNC(Ml = INT(PEEK(Ml/16I-7
30 DEF FND(MI = PEEK(MI AND 15
40 X= RND(31)
50 Y= RND(15I
60 C = RND(8)
70 M = &H400 + INT(X/2I + 32*INT(Y /2)
80 IF FNCIM) = C THEN GOSUB 1000
90 IF FNO(M) = 0 THEN GOSUB 1000

100 GOTO 40
1000 SET(X,Y,C)
1010 SET(63-X,Y,CI
1020 SET(X,31-Y,CI
1030 SET(63-X,31-X,C)
1040 RETURN

In lines 10 to 30 the screen is cleared to be completely black and the two
functions are defined. Then, lines 40 to 60, an X and Y co-ordinate value that
lies in the top righthand quarter of the low resolution screen is generated
along with a random colour code. Line 70 works out the memory location that
corresponds to X, Y remembering to divide each co-ordinate by two so as to
convert from low resolution co-ordinates to text screen co-ordinates. Then
the FNC function is called to see if the character location is the same colour as
the one a bout to be SET. If it is, then subroutine 1000 is called to SET the point
and three mirror images of it in the other three quarters of the screen. Line 90
checks to see if any of the points are on yet. If not, then subroutine 1000 is
called to SET the point. This means that a point will only be SET if it is in a text
square with points of the same colour or if it is in a text square with no points
SET as yet. The display produced by this program is quite pretty and is a
distinct improvement over just SETting random points. To see the difference
remove line 80 and replace line 90 with GOSUB 1000 which will then SETthe
point without any tests.

32

Chapter 3 Text and Low Resolution Graphics

In general using SET and RESET to create displays with more than one
colour and black is difficult. There is a lotto be said for the approach described
in the next section where the graphics codes are treated as extra text
characters.

Using graphics characters

So far the low resolution graphics facilities of the Dragon have been
described in terms of turning points on and off within a character location.
This attitude towards low resolution graphics leads naturally to SET and
RESET and their associated problems. Now, while there is no avoiding the
limitations of the Dragon's low resolution colour graphics, there is another
way of thinking about them that, in my opinion, makes things a little easier.

If you think about a character location divided into four smaller squares
then you can make a list of all the possible ways of turning these four squares
'on' and 'off'. If you do this you will find that you have a list of 16 different
shapes corresponding to the graphics characters listed in Appendix B of the
Dragon manual. You can indeed think of these 16 shapes as graphics
characters because the CHA$ function will accept numbers corresponding to
the code that has to be stored in screen memory to produce each shape. This
means that, apart from not being available on the keyboard, they can be
treated like the other text characters. There is only one complication - you
have to define the colour that each of the 'on' points will take. This leads to
one set of 16 graphics characters for each of the eight possible colours.
Rather than use a huge table to show which character codes corresponded to
which graphics character with which colour, it is simpler to give an equation.
The character codes for the 16 graphics characters in green on black are 128
to 143. To see these characters try -

10 FOR 1 = 128 TO 143
20 PRINT CHR$IIJ;" ";
30 NEXT I

To obtain any of the 16 shapes in any other color use -
CHR$(code + lc-1I*16I

where code is the character code of the shape in green and c is the standard
colour code of the colour that you want to use.

33

The Anatomy of the Dragon

The advantage of this use of graphics characters is that there is never any
attempt to use more than one colour in each character location and the
character codes can be stored in BASIC strings so as to make up small
shapes. For example, try

10 CLS 0
20 S$- CHR$(131 I + CHR$(135 I + CHR$(139I + CHR$(131 I
30 R$ - CHR$(128I + CHR$(143I + CHR$(143I
40 T$ - CHR$(134I + CHR$(128I + CHR$(128I + CHR$(137 I
50 PRINT @160,S$;
60 PRINT @192,R$;
70 PRINT @224,T$;
80 GOTO 80

which prints a green man! You can change the colour of the man by altering
the character codes using the formula given above and PRINT him anywhere
on the screen using the PRINT @ command.

Using the other semi-graphics modes

The Dragon's low reso·lution graphics are in fact just one of a number of
semi-graphics modes. These modes are not available from BASIC but it is
quite easy to write a number of subroutines to set the video generator and the
SAM chip to produce them. The semi-graphics modes and the corresponding
settings of the video generator and SAM chip can be seen in table 3.2.

Table 3.2

The Semi-graphics Modes

SAM PIA 1 resolution colours memory graphics
v2 v1 vO 7 6 5 4 3 2 1 0 rows x mode

0 0 0
0 0 0
0 1 0
1 0 0
1 1 0

cols - - - -- - -- -- - - - - - -
0 XX0 X LJ LJ LJ 32 X 64
0 X X 1 C LJ LJ LJ 48 X 64
0 XX0 X U U U 64 x 64
0 XX0 X U U U 96 x 64
0 XX0 XLJULJ 192 X 64

9
2
9
9
9

512
512
2048
3072
6 144

4
6
8
12
2 4

Where X means don't care, U means d o not change and C selects between
one of two colour sets.

34

Chapter 3 Text and Low Resolution Graphics

Each of the semi-graphics modes works in the same way as the low
resolution graphics mode but differs in the number of parts it divides a
character location into and the exact details of the memory map. For
example, semi-graphics mode 4 divides a character location into four parts
and uses one memory location per character location. However
semi-graphics 12 divides a character location into 12 parts an uses six memory
locations per character location. In general semi-graphics n divides a
character location into n parts as shown -

L1 LO

L3 L2

Ln Ln-1

To use one of the semi-graphics modes we need three subroutines -
1 I A subroutine to set VO to V2 of the SAM chip
2) A subroutine to set the PIA bits
3) A subroutine to set and reset any point specified by x and y co-ordinates.
Once we have these, any semi-graphics mode becomes as easy to use as the
low resolution graphics mode (which is in fact semi-graphics 4).

The subroutine to set the SAM chip is easy enough -

1000 POKE VO + &HFFC0,0
1010 POKE V1 + &HFFC2,0

1020 POKE V2 + &HFFC4,0
1030 RETURN

To use it all you have to do is storethe values forV0 to V2 shown in table3.2 in
the variable of the same name. The way that it works should be obvious from
the discussion of the SAM chip at the beginning of this chapter but, if you are
in doubt, work out what line 1000 does for VO = 0 and VO = 1 .

The subroutine for setting PIA 1 is more difficult because of the need to
leave some of its bits unaltered. PIA 1 's data register is at FF22 hex and it
behaves just like any standard Dragon memory location, except of course for
the fact that it controls the voltages on eight output lines. (The PIAs are

35

The Anatomy of the Dragon

explained in more detail in Chapter 7.) A subroutine to set the output lines in
table 3.2 is given below -
2000 A= PEEK (&HFF22) AND 7
2010 A = A + 8*CSS + 16*G0 + 32*G1 + 64*G2+ 128*AG
2020 POKE &HFF22,A
2030 RETURN
The subroutine is used by setting the values of CSS,G0,G1 ,G2 to the values
given in the table. The way that it works is to first read the current setting of
the PIA data register and 'mask' off the bottom three bits so that they can be
preserved (see Chapter 7) Line 2020 then constructs the value given by the
new states of the lines that we are changing and the old states of the lines that
we are leaving unchanged. This if finally POKED back into the data register.

Using these two subroutines it is simple to enter any of the semi-graphics
modes and all that is we need is a subroutine that will set and reset points.
There are two ways of doing this. We could either write a subroutine for each
mode or we could try and write one subroutine that would take the mode into
account. If semi-graphics mode 4 and mode 6 are ignored then the other
modes fall into a very regular pattern. As semi-graphics mode 4 is normal low
resolution graphics and selTii-graphics mode 6 is only two colour there is little
to be lost if the set/reset subroutine only works with the other modes. A
general set/reset subroutine for semi-graphics mode 8 to 24 is given below -

3000 M = &H400 + INT(X/2I + 32*Y
3010 Xl = 1-X+ INT(X/2)*2
3020 Yl = Y-INT(Y*2/MODE)*MODE/2
3030 S= 1
3040 Cl = C-1
3050 IF C = 0 THEN S = -1 :Cl = 0
3060 N = 128+ 16*C1 + (PEEK(M) AND 15)
3070 F = 4
3080 I F Y l > MODE/4 THEN F = 1
3090 IF S = 1 THEN N = N OR (F*(Xl + 111 ELSE N = N AND

NOT(F*(Xl + 11)
3100 POKE M,N
3120 RETURN

To use this subroutine all you have to do is set MODE to the correct mode, X
to the x co-ordinate Y to the y co-ordinate and C to the colour that you want
the point to become. If C is 0 then the point is reset and if C is greater than zero

36

Chapter 3 Text and Low Resolution Graphics

the point is set. All you have to remember is to use the earlier pair of
subroutines to place the Dragon in the correct semi-graphics mode before
using it. The subroutine is a little too complicated to explain in detail but if you
study it you should be able to make sense of it. There are two components to
the subroutine, finding out where to store the screen data and working out
what should be stored there. Line 3000 works out the position in memory that
corresponds to the screen position X, Y. The rest of the subroutine is mostly
about working out the value that should be stored there. Each memory
location sets the colour and defines the state of just two points using the
following format for positions within the top half of a character location -

b7

1 ,

b6 b5

I C2 I Cl
colour

b4 b3 b2

I co I Li + l I Li
on/off

bl bO

X
not used

In the lower half of the character location the format is roughly the same
except that the on/off information is stored in bits0 and 1 and bits2 and3 are
unused. L i+ 1 and Li refer to two points on the same horizontal 'line' in the
character location as shown earlier. As there is now more than one memory
location corresponding to each character location the memory map is a little
more difficult. Instead of storing all of the information concerning one
character and then the next and so on, the memory map is such that the top
row of points from the top row of characters is stored first, then the second
row and so on until all the information about the top row of characters has
been stored. This means that, if you forget about character locations for a
moment, the memory location corresponding to a point x, y on the screen is
simply &H400 + INT(x/21 + 32*y. Although both the memory map and the
data formats are quite complicated you should be able to follow the logic of
subroutine 3000 after a few attempts.

Even if you don't make the effort to understand the three subroutines given
above, you can still use them. As an exampl.e consider the problem of
implementing the kaleidoscope program given earlier but this time using
semi-graphics24 for increased resolution. The first thing that we have to do is
set the Dragon into semi-graphics24 using subroutines 1000 and2000. lf you
look at table 3.2 you can see that to obtain this mode V0 = 0,V1 =1 and
V2 = 1, also all of the PIA bits are either 0 or X (i.e. don't care) so we might as
well set all of the PIA graphics bits to zero. So the kaliedoscope program
starts

37

The Anatomy of the Dragon

10 V2 =1:V1 =1 :V0 =0
20 GOSUB 1000
30 CSS =0:G2 =0:G1 =0 :G0 =0:AG=0
40 GOSUB 2000

If you type in this program along with subroutines 1000 and 2000 and an extra
line, 50 GOTO 50, to stop the Dragon reverting to text mode you will see, from
the garbage displayed, that we also need a screen clear routine. You could
clear the screen by using subroutine 3000 to write a coloured block to each
screen location but this is slow. The following subroutine will POKE a
semi-graphics 'all points off' code into every memory location in the screen
area -

4000 FOR I = &H400 TO &H400 + 6 144
4010 POKE I, 1 28
4020 NEXT I
4030 RETURN

We can now return to the main program. After setting the mode and clearing
the screen we can get on with drawing the kaliedoscope. This is nothing more
than a direct translation of the earlier program but using subroutine 3000
instead of the SET command and making allowance for the higher resolution.

50 GOSUB 4000
60 MODE = 24
70 X2 = RNDl31 I
80 Y2 = RNDl95 I
90 C = RNDl7I+1

100 X = X2 : Y = Y2 :GOSUB 3000
110 X = 63-X2 :Y = Y2 :GOSUB 3000
120 X = X2 : Y = 191 -Y2 :GOSUB 3000
130 X = 63-X2 :Y = 191-Y2:GOSUB 3000
140 GOTO 70

Notice the way that X and Y are set to the co-ordinate of the point that is to be
set to colour C before the plotting subroutine is called. If you have typed in all
the parts of this program (main program lines 10 to 1 40 and subroutines 1000,
2000, 3000 and 4000) then you will be rewarded with a high resolution
kaleidoscope in nine colours! It has to be admitted that clearing the screen
and plotting so many points takes rather a long time in BASIC but it is not too
bad for many applications. To make sure that you understand how to use the
other semi-graphics modes try altering this pi"ogram to work in semi-graphics
mode 8 and 1 2. All you have to do is alter lines 10,30 and 60 and change the
limits of the Y co-ordinate to reflect the loWer resolution.

38

Chapter 3 Text and Low Resolution Graphics

When to use Semi-graphics

The Dragon's semi-graphics modes are indeed a bonus! The standard low
resolution graphics mode using semi-graphics mode 4 is good for many
purposes and is the easiest way to have nine colours on the screen. The main
attraction of the unsupported semi-graphics modes is the increased
resolution and the continuing availability of the full nine colours. The
Dragon's full graphics modes provide higher resolution than semi-graphics24
but none of them provide more than four colours. The only disadvantage of
the semi-graphics mode is the restriction on the way that the colours can be
used and this was extensively discussed with reference to BASIC's low
resolution graphics. The ways around this problem generalise to the other
semi-graphics modes and it is safe to say that the easiest way to use
semi-graphics 24 is with a black background! Although the subroutines given
in this chapter do allow you to use these hidden modes from BASIC they are
even more useful to the machine code programmer. If you know machine
code you should have little trouble in translating the subroutines into 6809
assembly language and then the semi-graphics modes are all yours, without
the speed restrictions of BASIC.

39

Chapter Four

High Resolution Graphics

In the last chapter the Dragon's text and low resolution graphics screen
was described along with a number of new, normally hidden, semi-graphics
modes. This theme of discovery continues in this chapter where the Dragon's
true or full graphics modes are examined and a few new ones are explained.
Once again if you are uninterested in the technical details you can simply use
the results by reading the technical summaries and practical sections. To get
the most from this chapter it is important that you have read Chapter 3.

Free graphics but no alpha!

Of the three ways of working that the graphics chip offers us, the true
graphics modes are the most flexible. Unlike text mode where only
alphanumeric characters can be displayed, and semi-graphics modes where
points can be plotted but with restrictions on colour, the full graphics modes
provide complete control over what appears on the screen. In graphics mode
you can change any point to any of the available colours without reference or
change to any other point. This freedom comes at a price, however, and in
general graphics modes provide fewer colours for more memory. Indeed the
largest number of colours that can be used in a graphics mode is four.
Another disadvantage is that there is no automatic way of producing
alphanumeric characters on a graphics screen. However, even with these
two problems the Dragon's graphics modes are often more useful than any
others.

Using high resolution graphics

There are five high resolution graphics modes supported by Dragon BASIC -

40

Chapter 4 High Resolution Graphics

PMODE resolution number of memory
row x col colours used

0 96 X 128 2 1536
1 96 X 128 4 3072
2 192 x 128 2 3072
3 192 x 128 4 6144
4 192 X 256 2 6144

These are, in fact, just five out of eight possible graphics modes offered by the
video generator and SAM in combination but more of this later. If you look at
the resolutions offered by the high resolution modes you will see that the
horizontal resolution is either 128 or256 and the vertical resolution iseither96
or 192. However, no matter what PMODE you are working in the Dragon's
high resolution graphics commands always assume that the screen is 256
wide by 192 high. This is an advantage because it means that you can write a
program in one PMODEand if you don't like the result you can try it in another
PMOOE without having to change all the co-ordinates to take account of the
change in resolution. On the negative side, working with a co-ordinate
system that leads you to believe that you have more points than you actually
have, can produce some odd effects. If you are working in PMODE 4 then
there is no problem. Changing the x or y co-ordinate by 1 moves you on to a
new dot on the screen so you can quite happily write programs that change a
dot at x,yto one colour and a dot at x + 1,y or x,y + 1 or even x + 1,y + 1 to a
different colour and you will see both dots. But in the lower resolution modes
the dot specified by x, y and x + 1,y could be the same dot! For example in
PMODE 2 or 3 there are only 128 dots horizontally. If you start at the top left
hand corner then 0 ,0 and 1,0 both specify the SAME dot but 1,0 and 2,0 refer
to different dots -

x co-ordinate

::

0

1 � _ _ :_ot-� -� __ :_o_t:_, - �_:_ot_: _�I .

1 ':, ,';: I

This is simply a result of there being twice as many different x co-ordinates as
there are horizontal dots! In PMODEs 0 and 1 the same thing happens with the
y co-ordinate as there are twice as many y co-ordinates as vertical dots.

41

The Anatomy of the Dragon

Much of the time, this excess of co-ordinates causes no real problems. If
you are plotting a shape and you specify it more accurately than the PMODE
can display it, you are only wasting a little time. However, sometimes odd
things can happen. Try the following short program -

10 PMODE4
20 SCREEN 1 ,0
30 PCLS 0
40 C =0
50 FOR Y =0 TO 191
60 FOR X=0 TO 255
70 PSETIX,Y,CI
80 IF C = 0 THEN C= 1 ELSE C = 0
90 NEXT X

100 IF C = 0 THEN C= 1 ELSE C =0
1 10 NEXT Y
1 20 GOTO 1 20

What it does is quite straightforward. After setting up PMODE4 in lines 10 to
30 it PSETs every point on the screen to either black or green. Lines 80 and 90
look a little odd but all they do is 'flip' the value in C - i.e. if C is0 it is changed to
1 and if it is 1 it is changed to 0! This results in adjacent points taking up
opposite colours. The pattern of colours on the first line is
black,green,black,green and so on. Because of line 100 the pattern on the
next line starts with green, the next with black and so on. The result is an
extremely fine chequered pattern in black and green. This program works
only because there are as many points in PMODE 4 as there are co-ordinates.
Now try changing line 10 to PMODE2 and re-running the program. You will
now find that rather than a chequered pattern you get horizontal stripes. If
you change line 10 to PMODE 0 then you will find that although things do
change on the screen the final result is the solid black display that you started
with. I leave it to you to explain these two results but the cause is obvious if
you watch the way the colours change on the screen and think about the fact
that sometimes different co-ordinates specify the same dot. Other examples
of this effect will be given in Chapter 6 in connection with the DRAW
command.

Apart from offering different resolutions, the different PMODEs also offer
different colour ranges. In fact each PMODE can use one of two colour sets.
The two colour modes can select between -

42

Set O
Colour code
Black 0
Green 1

and in the four colour modes -

Set o
Colour code
Green 1
Yellow 2
Blue 3
Red 4

Chapter 4 High Resolution Graphics

Set 1
Colour code
Black 0
Buff 5

Set 1
Colour code
Buff 5
Cyan 6
Magenta 7
Orange 8

To display any graphics in the colour set of your choice all you have to do is
SCREEN 1 ,0 for set0 and SCREEN 1 , 1 for set 1. It is important to realise that
you can change the colours of existing graphics from one colour set to the
other without having to redraw anything. For example try -

10 PMODE3
20 COLOR 4,3
30 PCLS
40 LINE (50,50)-(100, 100),PSET,BF
50 SCREEN 1 ,0
60 FOR 1 -1 TD 1000:NEXT I
70 SCREEN 1, 1
80 FOR 1 -1 TO 1000:NEXT I
90 GOTO 50

All that this program does is to draw a square on the screen and then select
colour set 0 and then colour set 1 and so on. Notice that red changes to
orange and blue to magenta. The correspondence between colours in the
two sets is obvious.

In a two colour mode the most useful colour set is probably set 1 giving a
black on white (buff) or a white on black display. However, in general set 0 ,
green and black, produces a sharper picture than set 1 . I n a four colour mode
the choice is between a colour set that includes bold colours, i.e. set 0 with

43

The Anatomy of the Dragon

red, blue and yellow and one that includes white. lf you need white then there
is no choice but to use set 1 along with its weaker colours.

Finally, before moving on to consider the details of how high resolution
graphics works and the missing modes, it is worth going over the exact
meaning and use of the high resolution initialisation commands, PCLEAA,
PMODE, SCREEN, COLOR and PCLS.

PCLEAR is used to reserve memory for use by high resolution graphics. It is
not normally needed unless you intend to used paged graphics (see Chapter
6) or really need to reclaim some of the memory that BASIC normally reserves
for the high resolution display. In any case it should only be used as the very
first command in a BASIC program.

PMODE serves a dual purpose. It sets the high resolution graphics mode that
all subsequent high resolution commands work in and it can be used to set the
'start page' for the display. Once again setting the 'start page' is something
that is not often used except for paged graphics (see Chapter 6). The most
usual form of the PMODE command is PM ODE n where n is the number of the
mode that you want to use. Notice that PMODE doesn't switch the Dragon
into the requested display mode, it simply causes all of the subsequent
graphics commands to write into the area of memory used by the mode.

SCREEN determines what is actually displayed and which colour set will be
used. SCREEN 1,s will cause the graphics screen mentioned in the last
PMODE command to be displayed using colour set s. SCREEN 0,s will cause
the text screen to be displayed. Specifying s = 0 gives the usual black on
green and s = 1 gives black on orange. The most important point to notice is
that SCREEN is the only command the changes the Dragon from one display
mode to another.

COLOR f,b sets the colours that will be used as foreground and background
colours. It is important to note that COLOR doesn't actually change any
colours already on the screen it simply sets the colours to be used by
subsequent commands. In particular changing the background colour will
not suddenly change the colour that everything is displayed against!

PCLS c clears the screen by filling it with colour c. If you do not specify c then
the current background colour will be used.

44

Chapter 4 High Resolution Grsphics

The standard way of starting a high resolution colour program is
1) set the PMODE that you want to work with e.g. PMODE 4
2) do anything that you want to do before the high resolution screen is
displayed e.g. PCLS 2
3) set default background and foreground colours, e.g. COLOR 3,2
4) display the screen in the colour set of your choice, e.g. SCREEN 1,0

Notice that there is no need to use a PC LEAR or specify a start page in the
PMODE command unless you are short of space or involved in paged
graphics. Step 2 can be much longer than the simple example. You could
choose to complete a complicated piece of graphics out of the user's view
and then suddenly show it by using a SCREEN command.

The Dragon's graphics modes

The technical details of the Dragon's full graphics modes are very similar to
the details of semi-graphics described in the last chapter. The settings of the
video generator and the SAM chip can be seen in table 4.1 along with details
of the modes they produce -

Table 4.1
The full graphics modes

SAM PIA 1 resolution colours memory graphics
v2 vl v0 7 6 5 4 3 2 1 0 rows x mode

0 0 1
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 0

cols - - - -- - -- - - - -- - - -
1 o o ocuuu 64 x 64 4 1024
1001 C U U U 6 4 X 128 2 1024
1 0 1 0 C U U U 64 X 128 4 2048
1 0 1 1 C U U U 9 6 X 128 2 1536
1 l 0 0 C U U U 9 6 X 128 4 3072
1 1 0 1 C U U U 192 x 128 2 3072
1110 C U U U 192 X 128 4 6144
1111 c u u u 192 X 128 2 6144

1F
IT
2F
PMODE 0
PMODE 1
PMODE 2
PMODE 3
PMODE 4

where U means do not change and C selects between one of two colour sets.
If you look at this table you will see that unlike the semi-graphics modes
Dragon BASIC only ignores three of the true graphics modes. It is still worth
finding out how to use these extra modes and on the way to discover the
format and memory map used by the more familiar PMODEs.

45

The Anatomy of the Dragon

Using the full graphic modes
To make use of the modes that BASIC ignores or to make direct use of the

PMODEs we need three subroutines. The first two are exactly the same as the
ones used to set the SAM chip and the video generator given in the previous
chapter i.e. subroutines 1000 and 2000. The third subroutine, to plot any point
in any colour, is the only one that has to be re-written taking into account the
new memory maps and data formats that the graphics modes use.

The graphics data formats are straightforward enough. In a two colour
mode each memory location controls the colour of eight points in a row on the
screen. The colour of each point is simply selected by whether each bit is a 1
or a 0 . For example, a memory location containing 15 decimal, that is
00001 111 in binary, would produce a row of eight dots, four in each colour.
The data format for a four colour mode is almost as simple in that each
memory location now controls the colour of four points on the screen. The
only complication is that the colour of each point is determined by two bits.
(To select one of two colours only needs one bit but to select one of four
colours needs two bits! l The bits are grouped in pairs in the most obvious way
so if a memory location contained 0001 1011 the grouping would be -
IOOI01 I 1 Ol 1 1 I definingfourdotsincolourO, 1 ,2,and3respectively. These two
formats can be summarised as -

dot

bit

Two colour format
2 3 4 5
I I I I

C I C I C I

7
I

8
I

C I C I

where each C = 0 or 1 and determines the colour of the dot

Four colour format
dot 1 2 3 4

I \ I \ / \ I \

bit Cl I co 1 1 Cl I co 1 1 Cl I co 1 1 Cl I co

where each pair of bits Cl ,CO determine the colour of one of the dots.

The memory map for all the modes is equally simple. The address of
the memory location that determines the colour of the point at x,y is -

m = stan address + INT(x*n/1 6) + xres*n/16*y

46

Chapter 4 High Resolution Graphics

where start address is the address of the first screen location (this is normally
0600 hex but more of this later), n is the number of colours available in the
mode, and xres is the x resolution (i.e. the number of columns) in the mode.
Using all this information we can now write a BASIC subroutine to set any
point to any colour in any graphics mode.

3000 P= 16/N
3010 M = SA+ INTIX/P l + XRES/P*Y
3020 Xl = P-1-X + INTIX/Pl*P
3030 Xl = Xl *8/P
3040 Cl = 2fl8/Pl-1
3050 D = PEEKIMI AND NOTICl *2fX1 I
3060 D = D OR Ic·21x1 I
3070 POKE M,D
3080 RETURN

This subroutine can be use by setting N to the number of colours in the mode,
ES to the number of columns, SN to the start address of the display, X to the x
co-ordinate, Y to the y co-ordinate and C to the colour (0-3) that you want the
point to be.

Before we can make use of any of this we need one more subroutine. Jn the
previous chapter we allowed the start of the semi-graphics displays to be the
same as the start of the text screen. In fact we can make the video generator
display almost any area of the Dragon's memory. To do this we have to use
some new locations within the SAM chip. The group of 14 addresses from
FFC6 to FFD3 are arranged in pairs and work together in roughly the same
way that the pairs that we called VO to V2 do, That is, writing to an odd
address clears the condition and writing to an even address sets it. The seven
pairs of addresses are usually called SO to S6 and can be thought of as a seven
bit binary number with 'clear' as O and 'set' as 1

Name address bit

S6 FFD3/FFD2 6
S5 FFDl /FFD0 5
S4 FFCF/FFCE 4
S3 FFCD/FFCC 3
S2 FFCB/FFCA 2
S1 FFC9/FFC8 1
so FFC7 /FFC6 0

47

The Anatomy of the Dragon

To make the video generator display the memory starting at S all you have to
do is to set or clear SO to S6 according to whether or not the corresponding
bits in the binary representation of S/&H200 are one or zero. The reason that
you have to divide by &H200 is simply that the screen memory can only start
at multiples of 1 /2K (&H200) memory locations. Perhaps thesimplestthing is
always to use the following subroutine:

5000 SN= INT(S/&H200I
5010 FOR 1 = 0 TO 5
5020 POKE &HFFC6 + 1*2 + (SN ANO 11,0
5030 NEXT I
5040 RETURN

This subroutine will POKE the SAM chip so that the display memory starts at
the 1 /2K boundary below the address contained in S. You can use this
subroutine to set the display area for ANY mode.

As an example of using these subroutines consider the problem of plotting
random points in the full graphics 64 x 64 mode. The program begins by
setting the SAM and the video generator to the correct mode.

10 V2= 0:V1 = 0:V0 = 1
2 0 GOSUB 1000
30 AG= 1 :G2= 0:G1 = 0:GO = 1 :CSS = O
40 GOSUB 2000

The next step is to set the starting address of the area of memory to be
displayed - &H600 is the usual start for high resolution graphics -

50 S = H&600
60 GOSUB 5000

Now we can plot random points using subroutine 3000, remembering to set N
and XRES first ·

70 N = 4
8 0 XRES = 64
90 C= RND(3)

100 X = RND(63I
110 Y = RND(63I
120 GOSUB 3000
130 GOT090

If you run this entire program (remembering to include subroutines 1000 and
2000 from the previous chapter and subroutines3000 and 5000 given above)

48

Chapter 4 High Resolution Graphics

you will see a 64 x 64 four colour display with out any of the limitations that
you find in semi-graphics modes.

As an exercise you might like to try to turn these random points into a four
colour kaleidoscope and then see what the program looks like in the other
graphics modes.

The best of all possible modes

The Dragon has so many display modes that it's not really surprising the
BASIC ignores some of them. Each of the modes has advantages and
disadvantages and it can be difficult to know which one to use for any given
application. If you are programming in BASIC then my advice is to
experiment with the new modes that have been introduced in this chapter but
do not plan to use them for any sizeable program until you are entirely familiar
with their behaviour. The Dragon's extended graphics commands are not
something to be given up lightly. If you are programming in assembler then
there is no such luxury to give up and you are free to choose whatever mode
you like! My own preferences are to use the 64 by 64 full graphics mode for
low resolution graphics and select the most appropriate PMODE for high
resolution graphics. If you really feel the need for nine colours then select the
semi-graphics mode that gives the required resolution but remember that this
makes any program much more complicated and, in general, semi-graphics
are best avoided. There is no denying that the full graphics modes are the
easiest to work with and they would be the best if only there was a simple way
to display text and if a better choice of colours was available. Unfortunately
there is nothing that can be done about the choice of colours without a
soldering iron but there is a way around the 'no text' problem, as Chapter 6
will show.

49

CHAPTER FIVE

Dragon Sound

The Dragon's sound generation is both simple and sophisticated.
Unlike many other microcomputers it doesn't use a special sound effects chip
but instead uses six of the output lines of one of the PI As to create waveforms
directly. In technical terms, the PIA is used as a 6 bit Digital to Analog
converter (D to Al. This method has the advantage of being cheap and
flexible in that the wave forms that come out of the D to A can be changed
using nothing but software. However, although Dragon BASIC provide two
very powerful sound commands SOUND and PLAY there is still room for
improvement. The D to A converter has other uses apart from sound
generation. It produces the coded signJI that is recorded when ever you
CSA VE a program and it also plays a major role in reading the joystick inputs.
If you are technically oriented then you could use the output from the D to A
as a wave form generator but you would need to bear in mind the low quality
of the output.

The Dragon's D to A converter is very useful but it is only one of four
possible sound sources. Of the others, the first is the cassette tape recorder,
used to save and load programs, which can also be selected in such a way that
its audio output is reproduced over the TV's loudspeaker. The second is an
external sound source, normally coming from a program .cartridge, although
almost anything can be played over the TV seh.1sing this input. Finally, there
is a 'single bit' sound source that can be used to supplement the range of
sounds that the Dragon can make. This single bit sound source also has one
other use in that it can work as a sound detector! You might not be able to see
a reason for needing to know when a Dragon sound starts or stops, after all
surely if the Dragon produces the sound it 'knows' when it starts and stops.
By the end of this chapter you will understand just how useful this can be.

To make use of any of the Dragon's more specialised sound facilities there

50

Chapter 5 Dragon Sound

is no avoiding a certain amount of technical discussion about the internal
workings. However, the chapter begins by taking a fresh look at the BASIC
sound commands.

Using SOUND and PLAY
The simplest sound-producing command is -

SOUND p,d
where p is a number between 1 and 255 specifying the pitch of the tone and d
is a number greater than O specifying the duration of the tone. This is such a
simple command that it is difficult to imagine that there is anything to add to
its description. However, the Dragon manual doesn't tell you what values of p
and d to use to produce any given note for any given time. All it does tell you is
that middle C corresponds to a value of p of 89. To a certain extent this is
forgivable in that the PLAY command is available for producing musical
notes. However, it is sometimes useful to be able to use SOUND to generate
notes of a given duration or of a given pitch.

The d parameter actually specifies the duration of the sound in 4/50ths of a
second. So a d value of 25 will make a sound for 2 seconds and a value of 12
will make a sound for around 1 second. The p parameter controls the pitch in a
fairly straightforward manner but unfortunately when this is coupled with the
details of the musical scale things get a little complicated. If you want to
produce a sound with a frequency of F then the value of P that you would
have to use is given by -

P = 256 - 1167/r) + 5*11-1 /r)
where r is the ratio of the frequency with the frequency of middle C In other
words if Fe is the frequency of middle C then

r = F/Fc
(Middle C is defined as 261.6Hz on the tempered scale but to use the above
equation for accurate frequency generation you would have to check what
your Dragon actually produced for SOUND 89,d.) As the ratio of notes a
semi-tone apart is 2{1 /12) the above equation can be used to specify notes in
terms of the number of semi-tones that they are above or below middle C. Try
the following -

10 DEF FNNIPI = 256-167 /2flP/1 2)-5 *11 /2flP/12)-1)
20 FOR l =0 TO 1 2
30 SOUND FNNll),8
40 NEXT I

51

The Anatomy of the Dragon

The function FNN(Pl will return the pitch number required to produce any
note if P is the number of semi·tones that the note is above or below middle C.
This function can be used to produce music in the range corresponding to an
octave above what you can manage using the PLAY command. As another
example try ·

10 DEF FNNIPI = 256-167 /2f(P/12I-5'I1 /2f(P/12 J-1 I
20 S = S + SGNIRNDI0J-.5)
30 IF S< .7 THEN S = .7
40 SOUND FNNISI, 1
50 GOTO 20

this plays notes that randomly change by plus or minus one semi·tones and
sounds very interesting!

The PLAY command is described at great length in the Dragon manual and
when it comes to transcribing tunes from sheet music to the Dragon it is
difficult to think of anything more convenient. However it is worth pointing
out that the PLAY command can be used to create sound effects as well as
music. The principle is simply to play a string of notes at a very high tempo.
For example try

10 PLAY "T155V31O1 CGCGV20 CGCGV10CGCGCGV5CGCGCG"
20 IF INKEY$ =" "THEN GOTO 20
30 GOTO 10

for the sound of a gun firing. The PLAY command in line 10 may look
complicated but it is in fact made up of the same section repeated. The first
part of the PLAY string, "T155V31 ", sets the tempo and the volume to
maximum. The next part, "01 CGCG" ,setstheoctavetothelowestpossibleand
plays the note pair CG twice. Then this note pair is then repeated at
decreasing volume until the end of the string. The whole effect works
because of the speed with which the notes are sounded. If you want to hear
what the PLAY string sounds like played normally change T155 to T5 and the
effect will vanish! You can produce a wide range of sound effects using the
PLAY command in this way. The only trouble is that it takes quite some time
to change the play string by trial and error to make the sound that you desire.

A problem common to both SOUND and PLAY is that while any sound is
being produced BASIC stops running. This isn't too much of a problem as
long as you are not trying to animate something on the screen while making
appropriate sound effects. In this case the best that you can do from BASIC is

52

Chapter 5 Dragon Sound

to move the object and then make some sound, then move the object again
and so on. It isn't really possible to do any better if you choose to use a
language other than BASIC because the Dragon can only do one thing at a
time -either move a shape on the screen or make a noise. However if you use a
faster language such as assembler then the swapping between the two
actions, moving and making a noise happens so quickly that the Dragon
appears to be doing both at the same time. This problem of not being able to
make a noise while doing something else is a result of the Dragon not using a
special sound effects chip that can get on with sound generation all on its
own.

The sound generator - a 6 bit D to A.

The Dragon's sound generator is in fact nothing more than 6 output lines of
one of the PIAs wired together in such away that you can produce a range of
output voltages. A single output from a PIA is capable of assuming one of two
possible states - high corresponding to approximately 5 volts and low
corresponding to approximately O volts. Which of these two states it adopts is
controlled by setting a bit in the PI As data register either to 1 for high orto O for
low. You can see that this allows us to control the voltage on an output line
using nothing but software to set and clear bits in the data register. However,
this wouldn't be very much use because we are restricted to one of two
voltages whereas to produce a pure sounding tone we need to be able to
produce a range of voltages.

The solution adopted by the Dragon is very clever indeed. The output from
each of six output lines of PIA 1 are added together to produce a final output
voltage. If we number the output linesO to 5 then instead of each being able to
contribute it full range of O or 5 volts the outputs are reduced so that each one
can only produce half the voltage of its higher numbered neighbour. For
example if line 5 can produceO or4 volts, then line4 could produceO or2 volts,
line 3 could produce O or 1 volt and so on down to line O that could only
produce O or 1 18th of a volt. This may sound like a complicated way of doing
things but, if you recall that this is exactly the way binary number works, you
will see the reason why. In a six bit binary number each of the bits increases in
value by a factor of two as you move from the right to the left. So, for example,
the number 0 11010 is -

53

The An8tomy of the Dragon

32 16 8 4 2
/2*16) /2*8) /2*4) /2*2) 12*1)

0 1 0 4 1 1
26 = 0 *32 1 *6 1 *8 0*4 1 *2 1 *1

If the PIAs output lines were turned on in the same pattern as the bits in this
binary number then when their different outputs were added together the
result would be a voltage proportional to 26. That is -

voltage = 0 *4 + 1 *2 + 1 *1 + 0*.5 + 1 *.25 + 1 *.175 = 3 .425

Similarly, setting the output lines to any pattern of bits produces an output
voltage proportional to the binary number that the bits represent. This is the
principle of a D to A converter. A binary number (Digital) is converted to a
voltage (analog) proportional to the size of the number.

The electronic details of the D to A converter can be seen in Fig 5 . 1 . The
ouputs from the PIA are first buffered by a 4050 CMOS buffer and are then
applied to a potential divider composed of six resistors. If you look at the
values of these resistors 1 10 K, 20K, 40K, SOK, 160K and320K) you will be able
to see the way that the different outputs are weighted in multiples ·of two.
Obviously the accuracy of the D to A converter depends on the accuracy of
these resistors and in the Dragon they are all 1 % tolerance. The exact
voltage output is modified by the presence of the 1 OOK and the 68K and 33K

resistors which tend to limit the voltage range to less than O to 5 volts. The
voltage produce by the D to A is approximately given by -

Voltage = IN*0.072) + 0.25 V
where N is the six bit value (0 - 63) used t.o set the output lines of the PIA.
Notice that this equation is only to be taken as a guide to the voltage that the D
to A produces because its exact value depends on the accuracy of the
resistors and the 5 volt power supply to be found in any particular Dragon.

Now that we know how the D to A works the next step is to try to use it
directly. However, before we can do this it is necessary to 'enable' the sound
output to the TV set, otherwise our attempts will remain unheard. The
selection of the sound output is described in detail in the next section but
suffice it to say that two more output pins of a PIA are used to select which

54

6821
PIA

Chapter 5 Dragon Sound

sound

cassette

Fig 5.1 The sound generator or 6 bit D to A

55

The Anatomy of the Dragon

sound source is sent to the TV and a third is used to enable and disable the
output. The subroutine given below will select and enable the sound output
from the D to A converter. Don't worry about how it works for the moment,
all will be clear after the next section.

1000 A= PEEK(&HF00 l J AND NOT(&HBJ
1010 POKE &H F00 l ,A
1020 A= PEEKl&HF0031 AND NOTl&HBI
1030 POKE &H F003,A
1040 A= PEEKl&H FF231 OR &HB
1050 POKE &HFF23,A
1060 RETURN

Once the D to A has been selected and enabled all that is left is to set its
output. This is only complicated by the fact that bits 2 to 7 of PIA 1 are used
and this means that if we want to set the output to V we have to POKE V*4
into the data register to 'avoid' using bits O and 1 .

2000 POKE &HFF20,V*4
2010 RETURN

We can now make the output of the D to A take on any value that we like.
However because BASIC is so slow it is still difficult to produce any useful
sounds. Try .

10 GOSUB 1000
20 FOR V = 0 TO 63 STEP 4
30 GOSUB 2000
40 NEXT V
50 GOTO20

which will produce a periodic 'ramp' waveform or
10 GOSUB 1000
20 V =0
30 GOSUB 2000
40 V = 63
50 GOSUB 2000
60 GOTO 20

which will produce a 'square wave'. You will soon discover that the highest
frequency that you can produce is very low! However, it is important that you
realise that this is entirely due to BASlC's lack of speed. If you were to use the
same techniques in machine code then you could, in theory at least, produce
almost any sound by programming the PIA to produce its waveform.

56

Chapter 5 Dragon Sound

It is also worth knowing that the output from the D to A convertor is always
available from the cassette output (pin 5). This means that you can record any
music or signals that are played over the TV set by switching the cassette
recorder to 'RECORD'. It also means that you could take this output and use it
for what ever purpose you wanted! You could for example use your Dragon
as a general purpose pulse generator if you added an amplifier and some
software. From most user's point of view perhaps the most important thing to
realise about the sound generator is that as a general purpose D to A
convertor it can be used to create almost any sound - all you need is the
software.

Before moving on to consider other aspects of Dragon sound it is worth
mentioning that the BASIC sound commands and CSAVE use the D to A
converter to produce good approximations to pure tones. The two tones
used to record data by the CSA VE Command are good approximations to a
sine wave but as can be seen from Fig 5.2 the approximation used by the
sound commands is not so good! However this rough and ready sine wave
serves the purpose very well because too pure a tone would soon become
boring.

Fig 5.2 Sine Wave Approximation

Selecting the source

The Dragon can select one of three different sound sources - the D to A
convertor discussed in the last section the cassette input and an external
sound source.

57

The Anatomy of the Dragon

The way that this selection is carried out is quite simple. Two of the 'special'
output lines of PIAO, CA2 and CB2 are treated asa two bit number and used to
select one of the three sources. Also output CB2 from PIA 1 is used as a sound
enable/disable bit. The circuit diagram of the selector can be seen in Fig 5.3.
Changing the state of these special PIA lines is a little more tricky than for the
ordinary output lines as each one corresponds to bit 3 in a different memory
location.

PIAO CA2 is at &HFF0l
PIAO CB2 is at &H FF03
PIA 1 CB2 is at &HFF21

A subroutine to set these three bits to a particular state has already been
introduced in the previous section. It is just a special case of -

1000 A= PEEKl&HF00l) AND NDTl&H8)
1010 POKE &HF00l ,A OR 11 AND sI·a
1020 A= PEEKl&HF003) AND NOTl&H8 I
1030 POKE &HF003,A OR 12 AND sI•a
1040 A= PEEKl&HFF23I AND NOTl&H8 I
1050 POKE &HFF23,A OR 11 AND E)•a
1060 RETURN

which will set the sound source to S and either enable it or disable it depen­
ding on the value of E (E = 0 disables and E = 1 enables). The sound source
numbers are

S source
0 D to A
1 Cassette
2 External
3 silence!

To check that this subroutine works as you would expect, place a music tape
playing in the cassette recorder and try-

10 MOTOR ON
20 S = l
30 E = 1
40 GOSUB 1000
50 TIME R = 0
60 IF TIMER< 1000 THEN GOTO 60
70 E = 0
80 GOSUB 1000
90 TIMER = 0

58

PIA0

CA2 CB2

PIA1
CB2 STY

ovi--..... -,Y3

external_----iYZ sound

from
cassette--------iY1

from
o to A----,vo

A B

4529

w

Chapter 5 Dragon Sound

SOUND

Single bit sound/
sound sense

Fig 5.3 Sound source Selection Circuitry

59

The Anaromy of the Dragon

1000 IF TIMER< 100 THEN GOTO 100
110 GOTO20

This selects the cassette as sound source and then enables it for a while then it
disables it and so on.

As the sound commands SOUND and PLAY both select the correct source
automatically and BASIC provides the AUDIO command to select the
cassette you might suppose that the above subroutine is redundant.
However it does serve a useful purpose, as well as being an example, in that it
allows you to select the external sound source. This normally comes from a
program cartridge plugged into the expansion port but if you connect any
suitable sound source to pin 35 of the expansion socket you can select it with
subroutine 1000.

Single bit sound and sound sense

There is one other sound source that the Dragon has at its disposal · single
bit sound. This is simply a PIA line that is connected directly to the output of
the selector described in the last section. It is in fact line PB1 of PIA 1 and it
serves two different purposes. Firstly, when set to act as an input it can be
used to detect when sound is being sent to the TV set and, secondly, when
programmed as an output it can be the promised alternative sound source.
Normally it is set to bean input, so to use it as a sound source the first job is to
change it to be an output. How to set lines to inputs or outputs is described
fully in Chapter 7 so for the moment don't worry about subroutine 1000 given
below which changes PB 1 from input to output. Once it is set to act as an
output there are only two things that we can do · set it to 1 or set it to O. By
changing its state sufficiently rapidly we can produce a very rough sound ·

10 GOSUB 1000
20 B = 0
30 GOSUB 2000
40 B = l
50 GOSUB 2000
60 GOTO 20

1000 A= PEEK(&H FF23 I AND NOTl4 I
1010 POKE &HFF23,A
1020 A= PEEK(&HFF22 I OR 2
1030 POKE &HFF22 ,A

60

1040 A = PEEKl&HFF23) OR 4
1050 POKE &HFF23.A

1060 RETURN
2000 A = PEEKl&HFF22 I AND NOT(2)
2010 POKE &HFF22,A OR 2 ' B
2020 RETURN

Chspter 5 Oregon Sound

Subroutine 2000 sets PB 1 high and low alternately. Once again the
comments about how slow BASIC is are appropriate here. If you want to
make any good use of the single bit sound source then you really need to use
assembler.

It is in its other role that the single bit sound source is really useful as a
sound sensing bit. In its normal state as an input it can be read to discover if
there is any sound being sent to the TV set. The reason why you might what
to know if sound is being sent to the TV set is revealed in the next section but
for now the following user defined function will return O if all is silent and 1 if
there is any sound.

10 DEF FNSIXl = 1-I PEEK(&HFF22 I AND 2 1/2
Notice that X is a dummy variable and is only included because the Dragon
will give an error message without it.

Using AUDIO and MOTOR

There are two BASIC commands, AUDIO and MOTOR, which when used
in conjunction with the sound sensing function can allow your Dragon to do
remarkable things. The command MOTOR ON will start your tape recorder
running and MOTOR OFF will stop it. (All this assumes that you are using the
motor control connection on the tape recorder lead.) The command AUDIO
ON will connect the output of the tape recorder to the TV set's sound channel
and AUDIO OFF will disconnect it. If you have never tried playing with these
commands place a music cassette in your tape recorder, press the 'play'
button and then try •

10 PRINT "PRESS 'H' TO HEAR"
20 PRINT "PRESS 'S' TO STOP;;
30 MOTOR ON
40 A$ = INKEY$
50 IF A$ = "H" THEN AUDIO ON
60 IF A$ = "S" THEN AUDIO OFF
70 GOTO 40

61

The Anatomy of the Dragon

The uses of the AUDIO command include things like recording a sound
track of questions for a question and answer program or giving instructions in
spoken English about how a program should be used. Once you start thinking
of times when AUDIO could be used all sorts of uses occur to you that other
computers would have great difficulty in coping with. The only trouble is
synchronisation. How do you make sure that the question program keeps in
time with the questions being asked on the tape. The answer is of course the
sound sense function!

Find a blank cassette and record the words "ONE", "TWO", "THREE" on
it with a good silent gap between each. Then rewind it, press play and try the
following program - (before typing this program in it is a good idea to switch
the Dragon off and on to make sure that the sound sense line is set to input
following the program in the last section that set it to an output.)

10 DEF FNS(XI = 1-(PEEK(&HFF22I AND 2 1/2
20 MOTOR ON
30 AUDIO ON
40 IF FNS(XI =0 THEN GOTO 40
50 PRINT "ONE"
60 IF FNS(XJ = 1 THEN GOTO 60
70 IF FNS(XJ = 0 THEN GOTO 70
80 PRINT "TWO"
90 IF FNS(XI = 1 THEN GOTO 90

100 IF FNS(Xl =0 THEN GOTO 100
1 10 PRINT "THREE"
120 FOR 1 =1 TO 100
130 NEXT I
140 MOTOR OFF

If you adjust the volume control on the tape recorder correctly you should be
able to getthe words .. ONE : · .. TWO .. and ··THREE ·· printed on the screen atthe
same time that they are said on the tape recorder. If you have trouble the
problem is almost certainly that the silences between the words are not quiet
enough. This is only a demonstration but you should be able to see that this
same method could be used to test for the start of a recorded question on on a
tape. In practice you have to use some care with the sound sense function to
avoid 'triggering' it on the wrong sound but at least it is a step in the right
direction!

62

Chapter 5 Dragon Sound

BASIC sounds

The main theme of this chapter has been the flexibility of the Dragon's
sound generating hardware. However, using BASIC there is not very much
that can be done to increase the range of sounds that the Dragon can
produce. Using the information presented here it is possible to make the
Dragon produce all manner of sounds but only if you use assembler or
something a lot faster than BASIC. Even though this is the case you can have
a lot of fun creating simple tunes and sound effects using nothing but the
BASIC commands SOUND and PLAY and this area is certainly far from fully
explored. If you add the MOTOR and AUDIO commands to the list then the
unexplored territory is even greater. Who needs a speech synthesiser when
the Dragon can say anything you can!

63

Chapter Six

Advanced Graphics

Following Chapters 3 and 4 you might think that there is very little left to say
about the Dragon's graphics M you would be wrong! The early chapters dealt
mainly with the graphics hardware and the way that it interacted with and was
controlled by Dragon BASIC. This still leaves the rather large subject of how
to handle the software component of graphics for this chapter. Once again it
is assumed that you have looked at the Dragon manual and know a little about
the graphics commands PSET, PRESET, LINE, CIRCLE, DRAW, PAINT,
GET and PUT. This chapter will be mainly concerned with how these
commands can be used to achieve the objective of good graphics. The only
trouble is that it is difficult to decide what 'good graphics' are!

Which of the commands you will find most useful depends very much on
what you are trying to do and what sort of graphics interests you. As a result,
the topics in this chapter are a collection of different ideas about how to use
the Dragon rather than a single explanation of how things work. Although
you are expected to know something of the graphics commands it is all too
easy to miss interesting points when their syntax is complicated so you will
also find some extra explanation of some of them.

Paged Graphics
One of the most confusing thing� that beginners have to get used to is the

Dragon's bewildering range of commands that seem to do nothing but get
you into a graphics mode. For example a high resolution graphics program
might begin M

10 PCLEAR 2
20 PMODE 1,1
30 COLOR 4,1
40 SCREEN 1,0
50 PCLS 2

64

Chapter 6 Advanced Graphics

and allthisjustto obtain a clear yellow PMODE 1 screen! It is true that some of
these commands are not needed in the majority of programs but they do exist
and it is sometimes difficult for the beginner to sort out what does what.
Although a brief description of the standard graphics initialisation commands
was given in Chapter 4 it is worth going through the above program line by
line. Line 10 reserves two 'pages' of memory to store the graphics
information. These two pages are for graphics use and graphics use alone -
BASIC etc has to keep out! Line 20 informs the Dragon that you want all
subsequent graphics commands to use a PMODE 1 screen starting at the first
page that you reserved using PCLEAR. At this point nothing new is displayed
on the TV screen. You could use PSET, LINE or any other command to draw
graphics information into the area of memory that you reserved but nothing
would show on the TV set. Line 30 sets the default foreground and
background colours to be used by any graphics commands that follow. You
should realise by now that this command doesn't change anything already in
the memory or on the screen. Line 40 is the first command in the program that
actually changes what is displayed on the TV screen. This switches the
display from the text screen or, as we shall see, the current graphics screen,
to the one referred to by the last PMODE command. It also selects the colour
set that will be used to display the screen. Finally, line 50 clears the screen to
colour 2 or yellow. Notice that if PCLS had been used without a specified
colour then the default background colour would have been used.

You should by now be used to the idea that the Dragon can draw on a
graphics screen while displaying a text screen. What you probably are not so
familiar with is the idea that the Dragon has a number of graphics screens that
it can draw on and a number of screens that it can display! If you look at the
memory map given at the end of Chapter 2 you will see that there are eight
areas of memory called graphics page 1 to graphics page 8. Each one of these
pages corresponds to 1 .5K of memory and each high resolution graphics
mode needs an exact number of pages of memory to store the data relating to
its display

PMODE

0
1
2
3
4

pages
needed

1
2
2
4
4

65

The Anatomy of the Dragon

If you do not use a PC LEAR command within a program then BASIC prepares
for the worst and sets aside four pages for graphics and reclaims the other
four for its own use. If you know that you are going to use PMODES 0, 1 or 2
then you can use PC LEAR to free the graphics pages that you are not going to
use but unless the BASIC program that you are writing is a very big one this
usually not essential.

What is more interesting is the prospect of using PC LEAR to reserve more
graphics pages than the usual four. If you reserve all eight then you could
have eight distinct screens in PMODE 0, four in PMOOEs 1 and 2 and two in
PMODEs3 and 4. Bya careful use of the PMODEand SCREEN command you
could contrive to display one graphics screen while drawing another. Which
screen you are drawing on is selected by PM ODE m,s where m is specifies the
graphics mode and s specifies the page number where the screen starts. So
for example in PMODE O one of the eight screens would be selected by
PMODE0,I where I was the screen number. This is all very simple but there is
a slight problem when it comes to PMODEs that use more than one graphics
page per screen. The question is which page number do screens start on. For
example in PMODE 1, which uses two graphics pages per screen you could
first draw on the screen starting at page 1 (i.e. PMODE 1 , 1) and then draw on
the screen starting at page 2 (i.e. PMODE 1,2). While this is perfectly good
BASIC there are very few occasions where this would make sense. What you
are doing is to make a screen up from pages 1 and 2 and then make another
screen up from pages 2 and 3. Obviously with graphics page 2 in common
these two screens are not independent, in fact the top half of one is the
bottom half of the other! Apart from very exceptional cases, the only way to
work is to divide the graphics pages up into non-overlapping screens and
work only with these! That is -

PMODE screen pages
1 ,2 1 1 & 2

2 3 & 4
3 5 & 6
4 7 & 7

3.4 1 1 ,2,3 & 4
2 5,6,7 & 8

Notice that the 'screen' numbers are not recognised by BASIC but they do

66

Chaprer 6 Advanced Graphics

make thinking about paged graphics a lot easier. To select any screen all you
have to do is use the page number of its first page in the PMODE command.

Perhaps the most common use of paged graphics is in drawing one
graphics screen while another is displayed. In fact this is a technique that
most graphics programs would be improved by - it give a very bad impression
if the user has to sit and watch a clever graphics screen being laboriously
drawn. However there is one other interesting application for paged graphics
- paged animation. If you draw a number of graphics screens, each one
slightly different and then display them in sequence you can create the illusion
of movement. The standard way of achieving this sort of animation is based
on the draw/re-draw cycle. In other words you draw the picture, erase it and
then re-draw it slightly altered. The trouble with the draw/re-draw method is
that the fastest movement that you can achieve is limited by the time it takes
to draw the picture. Usually this means that the picture is very simple and only
a very small portion of it is erased and re drawn. This means that many
animation tasks are out of the range of basic and you have to resort to
assembler. For example, consider the simple problem of animating a number
of circles or disks that 'pulsate'. The draw/re-draw method would require
that all the circles were drawn with a small radius, then erased and drawn with
a slightly bigger radius. This cycle would continue until the circles reached full
size and then it would go into reverse, drawing the circles smaller each time
and so on. Even though the Dragon is, very fast at drawing circles this simple
method would be far too slow even with only two or three circles, but paged
graphics allows you to animate as many pulsating circles as you like and even
needs a delay loop to slow it down!

The basic idea behind paged animation is to draw a slightly different version
of the picture on each of the screens available in the PMODE, and then display
each one in turn. Notice that the drawing of the pictures and the actual
animation are separated into two different stages. You can take as long as
you like drawing each picture because the speed of animation is only affected
by how long it takes to 'flip' between the different screens! As an example of
paged animation, the following program implements the 'pulsating circle'
idea described above -

10 PCLEAR 8
20 GOSUB 1000
30 FOR J = 1 TO RND(50 I
4 0 X = RNDl255I
50 Y = RNDl191 I
60 GOSUB2000

67

The Anatomy of the Dragon

70 NEXT J
80 GOSUB 3000
90 GOSUB 4000
100 GOTO 80

1000 FOR 1 = 1 TO 8
1010 PMODE 0,1
1020 PCLS
1030 NEXT I
1040 RETURN

2000 FOR 1 = 1 TO 8
2010 PMODE 0,1
2020 CIRCLE (X,Y),I*2
2030 NEXT I
2040 RETURN

3000 FOR I= 1 TO 8
3010 PM ODE 0,1
3020 SCREEN 1, 1
3030 FOR K = 1 TO 50
3040 NEXT K
3050 NEXT I
3060 RETURN

4000 FOR 1 = 8 TO 1 STEP -1
4010 PMODE 0,1
4020 SCREEN 1, 1
4030 FOR K = 1 TO 50
4040 NEXT K
4050 NEXT I
4060 RETURN

The main program is easy to understand. Line 10 reserves all eight graphics
pages for use in PMODE 0 giving a total of eight different screens. Subroutine
1000 PCLSs each screen in turn. The FOR loop between lines 30 and 70
generates a random number of pulsating circles centered at X, Y. Subroutine
2000 is the part of the program that actually draws the pulsating circles. It
does this by selecting each of the eight screens in turn and drawing a single
circle on each. As the radius of the circle is 1*2, where I is the page number,
you should be able to see that the size of the circle increases as the page
number increases. After drawing all the circles, the main program simply calls

68

Chapter 6 Advanced Graphics

subroutine s 3000 and 4000 repeatedly. Subroutine 3000 takes us though a
display cycle where the circles increase and subroutine4000 takes use though
a display cycle where the circles decrease. They work by selecting a page to
be displayed using PMODE 0, 1 and then displaying it using SCREEN 1 , 1 .
Notice that to make the animation run slow enough to be smooth and give the
impression of pulsating, the display loop has to be slowed down by a delay
loop! If you want to see how fast things can move delete the FOR loop on K in
both subroutine 3000 and 4000.

If you would like to see some variations on this program try adding,

2025 PAINT (X,YI, 1, 1

which produces pulsating disks. If you feel even more adventurous you might
like to add line 2025 and

55 D = RND(2)-1
2015 IF D =0 THEN R = 19-11*2 ELSE R = 1*2
2020 CIRCLE IX,Y),R

These last changes will produce a screen full of disks some of which increase
in size while the rest decrease and vice versa I i leave further improvement to
you but I cannot resist pointing out that the 'sound sense' subroutine
described in the last chapter along with the AUDIO command could be used
to synchronise the changes ln the disks to whatever music might be be
playing over the TV set - a Dragon disco is very possible!

The is one other command in Dragon BASIC that is concerned with
graphics pages, PCOPY. This will copy the contents of any graphics page to
any other. The only complication with using this command is remembering to
copy all the pages that make up a screen in the correct order. For example, in
PMODE O you can copy a whole screen to another screen using just one
PCOPY command e.g. PCOPY 1 ,6 will copy the contents of the screen
corresponding to graphics page 1 to the screen corresponding to graphics
page 6. However to copy a PMODE 2 screen you would need two PCOPYs
e.g. PCOPY 1 ,3: PCOPY 2,4 would copy the whole of screen 1 to screen 2.
There may be applications where you only need to copy part of one screen
into another but they are not common. One of the most useful applications of
the PCOPY command is in 'background preservation'. Suppose you had
written a program that played a game using small moving objects against a
complicated background and as the game progressed the background
graphics were altered. To play the game a second time would mean

69

The Anatomy of the Dragon

re-drawing the complicated background. As an alternative you could draw
the background into one screen and copy it into another screen where the
game would actually be played. Renewing the background would now only
take a few PCOPY commands!

The DRAW command

One criticism often levelled at the Dragon is that it doesn't have any
user-defined characters. While this is quite true it does have the DRAW
command which in many ways makes user-defined characters unnecessary!
The usual way to introduce the DRAW command is to show how it can be
used todrawlargeshapes, forexample, asquarewould be ''U40 R40 D40 L40".
There is no doubt that drawing large irregular shapes is a useful application of
the DRAW command but it has another less obvious application in drawing
small solid shapes. If you read the Dragon manual you will come to the
conclusion that solid shapes are produced by first drawing a large outline and
then PAINTing the interior of the shape. This is the best way to produce large
shapes but the DRAW command alone is by far the better way to produce
small solid shapes and small solid shapes are what other machines refer to as
user-defined graphics.

The DRAW command is very easy to use and there is little point in
repeating the details of the movement commands given in the Dragon
manual. There are, however, a few points of detail that it is worth going over.
The best way to think of the action of the DRAW command is to imagine a
'pen' that is moved, its colour changed etc, by the one letter commands
within the draw string. Whenever you give the pen a movement command
such as U5 or E4 it will move from its current position to its new position
leaving a mark in its current colour. You can change the colour of the pen
using the C command, lift it from the screen so that it leaves no mark by
placing B in front of any command and move it to an absolute position on the
screen using the Mx,y command. One of the most neglected draw
commands is the move relative command. If you write M 10, 10 the pen will
move to the point on the screen with co-ordinates 10, 10 but if you write
M +10 , + 10 the pen will move to x + 10 ,y + 10 where x,y is its current
position. Similarly M-10,-10 will move the pen to x-10,y-10. Using this
command it you can create relative movements like those produced by the
commands U, D, etcbutatan angle other than a multiple of90 or45 degrees.

70

Chapter 6 Advanced Graphics

Another command that is often misunderstood is the An or angle
command. Depending on the value of n all of the lines produced by
subsequent movement commands are rotated through 0, 90, 180 or 270
degrees. This sounds very clever but as all the movement commands are
multiples of 90 or45 degrees all that is amounts to is temporarily changing the
meaning of the commands. For example, following A 1 (rotate through 90
degrees) the U command behaves like the R command, the R command like
the D command and so on. What is perhaps more important is the effect that
these changes have on the outline that is drawn following such a rotation. An
outline drawn following an An command will appear to have been rotated
about the point that the pen was at when the An command was given. For
example, try -

10 PMODE0
20 SCREEN 1, 1
30 PCLS
40 FOR I -0 TO 3
50 DRAW "BM100, 1 00;A" + STR$(1) + "U50L 10U5R10D5"
60 NEXT I

which will draw the same shape starting from the same location with four
different rotations.

A command that is easy to understand but not used as often as it might be
is the Sk or Scale command. Following an Sk command all drawing
instructions have the same effect as if they had been written k*n/4 times as
large. For example, following SS, U5 moves the pen 10 (= 8 *5/4) units up.
The scale command is useful because it allows us to design a shape with a
draw string working at a large scale and then when it is correct reduce the
scale to give the size of desired. It also has an important use in designing the
Dragon's equivalent of user-defined characters, which is discussed below.

The previous example introduced an idea which turns out to be the key to
using the DRAW command more flexibly. If you look at line 50 you will see
that the angle through which everything is rotated is set by the variable I
which is added into the middle of the draw string each time the DRAW
command is carried out. The most important thing to realise about the draw
string is that it is a string, just like any other. This means that you can use all of
the standard BASIC ways of manipulating strings to construct a draw string.
For example, if A$ contains the commands to draw a shape but no commands

71

The Anatomy of the Dragon

that move the pen to an absolute location (i.e no Mx,y commands) the shape
can be drawn at any position by -

DRAW "BM" + STR$IXI + "," + STR$IY) + "; " + A$

where the variables X and Y contain the co-ordinate of the position that the
pen will start drawing the shape from. Notice the use of the STR$ function to
convert the numbers stored in X and Y to strings. The draw string is indeed a
string and any numbers that you want to include in it should always be
converted into string form and then concatenated with the rest of the draw
string in the correct position. Using this basic idea you can arrange for other
features of a DRAW command to be changed by the values stored in a
variable. For example,

DRAW "C" + STR$INI + A$

will draw the shape specified by the commands in A$ in the colour specified
by N (as long as A$ doesn't contain any colour commands of its own).
Another way of achieving the same ends is -

DRAW C$ + A$

with C$ set to Cn where n is the colour code desired, e.g. C$ = "CO".

This ability to specify colour and absolute position of a shape is so useful
that unless there is a good reason to the contrary the follow guidelines are
worth following

- design the shape using a draw string without absolute movement and
without any colour commands

- store the commands in a string variable (hopefully with an
appropriate name)

- if you need to use more than one colour use a different variable for
each colour component of the shape

- when you want to actually draw the shape set the position and
colour information as follows:

X - x:Y-y:DRAW "CnBM" + STR$IXI + "," + STR$IYI + ";" + s

where x , y i s the position that you want the shape drawn at, n i s the colour
code for the colour that you want the shape drawn in and s is the string
variable that contains the movement commands for the shape.

72

Chapter 6 Advanced Graphics

If you stick to these guidelines then you will find that your programs are
easier to change and draw strings can be re·used to produce the same shape
at different places and in different colours. A typical example of the using a
draw string in this way is in the draw/re·draw method of animation described
in the last section. Suppose we want to animate a single square outline across
the screen this can be achieved by defining a draw string for the shape ,
drawing it in the foreground colour and then erasing it by drawing it in the
background colour. Repeating this at a number of locations give the
impression of movement. Try ·

10 PMODE 4
20 PCLS
30 SCREEN 1, 1
40 SQ$= "U6R6D6L6"
50 Y= 100
60 FOR X = 0 TO 200
70 DRAW "C5BM" + STR$(X) + "," + S TR$(Y) + SO$
80 FOR K = 1 TO 10:NEXT K
90 DRAW "C0BM" + STR$(X) + "," + S TR$IY) + SQ$
100 NEXT X

Line 40 sets up the square shape, line 70 draws it at X, Y in colour 5 and then
line 90 removes it by re·drawing it in colour 0, the background colour.

Using the DRAW command to produce small solid shapes suitable for use
in games is easy enough in theory, but there are a few practical pitfalls to be
aware of. Suppose we want to define a small solid ball to animate as part of a
game, we could use the CIRCLE command to draw a circle and then use the
PAINT command to make it solid but this would be very slow. The pattern of
dots that make up a small solid disk is might be something like

This solid shape can be produced by a DRAW command if the pen is moved to
each dot in turn. It doesn't matter if some of the dots are visited more than
once, this simply wastes a little time as long as the pen reaches every dot. For
example, the pen could 'cover' the dots in the following way .

73

The Anatomy of the Dragon

start *-> -*---*---*
-< ----*---*---*---*

* ---*---*---* -> -*---* ---*---*
------*---*-< -*---*---*---*
------*---*-> *---*---*---*

------*-< -*---*---*
*---"-> -"---*end

Giving rise to the following draw string -
R3F1 L5G1 R7D1 L7D1 R7G1 L5F1 R3

To see this draw string in action change line 40 in the moving square example
given above to

40 SQ$ = "R3F1 L5G1 R7D1 L7D1 R7G1 L5F1 R3"
and you will see a small white ball move smoothly across the screen! In a
games program you wouldn't move the ball just one location at a time you
would probably choose something more like 6 to 8 locations per step to
increase apparent speed. To see the effect of increasing the amount that the
disk moves each time change line 60 to -

60 FOR X = 0 TO 200 STEP 6
This idea of using DRAW to produce solid shapes seems easy enough but

there is problem to beware of if you are using anything other than PM ODE 4.
As already explained in Chapter 5, in PMODE4 there areas many dots on the
screen as there are distinct co-ordinates, that is no two co-ordinates refer to
the same point on the screen. However, this is not the case in the other
PMODEs and as demonstrated in Chapter 4 this can lead to some unexpected
effects when using PSET, PRESET, and LINE. These unanticipated effects
also crop up when using the DRAW command. For example, try the following
program which draws a small 'dog' shape using the technique for solid shapes
,described above -

10 PMODE 4
20 PCLS
30 DOG$ = "Rl D1 L 1 Rl D3U 2R3D2U3"
40 SCREEN 1,1

50 Y= 100
60 X = 32
70 GOSUB 1000
80 X = 47
90 GOSUB 1000

100 GOTO 100

74

Chapter 6 Advanced Graphics

1000 DRAW "Cl BM" + STR$(XI + "," + S TR$IY) + DOG$
1010 RETURN

Two copies of the dog shape are drawn, one at 32,100 and oneat47, 100 and
both look more or less the same. After running this program change line 10 to

10 PMODE O
and re run the program. The results are rather surprising. Not only does the
dog shape look different, the two copies are no longer the same! The reason
for this is quite easy to see once the effect has been pointed out. ln PMODE 0
there are only half the number of dots in the x and y directions than the
maximum x an y co-ordinates would lead us to believe. This means that
sometimes a move of one co-ordinate position in a draw string takes us to a
new screen point and sometimes it does not. The first effect that this has is
that some of the fine detail in a draw string may be lost, changing the shape
that you are trying to produce on the screen. The second effect is that a
different part of the fine detail will be lost depending on whether the shape is
started from an odd or even co-ordinate location. So, the dog drawn starting
at 32,100 looks different from the dog drawn at 47, 100. If you try to animate
the dog the effect looks even worse as the shape changes as the dog moves
across the screen. This loss of fine detail can occur even on shapes that are
large compared to the dog. Indeed in PMODEO or 1 any draw string moves of
one can lead to trouble!

The answer to the problem is to avoid trying to use more resolution in a
draw string than is available on in the PMOOE that you are using. One way to
do this is to design any shapes that you want to use in PMOOE 4 where no
strange things can happen and then use the resulting draw string in PMODE 0
or 1 but with a scale factor of 8. To see this, change the dog's draw string to
include S8 at the start in the previous program. In PMODEs 2 and 3 things are
a little more complicated because you can use the full y resolution but not the
full x resolution. That is, draw strings may contain moves of 1 unit in the y
direction but only moves of 2 units in the x direction will always give you a new
point on the screen. This seems simple enough until you ask what is the
smallest diagonal movement that always guarantees a new point. (The
answer is one!)

Whenever you use DRAW or any of the other graphics commands you
should always ask yourself whether you are trying to use more resolution than
the screen allows. As we have seen, the effect of doing this is not just the loss
of fine detail, it can cause moving objects to change and shimmer in a very

75

The Anatomy of the Dragon

irritating manner. It may be this misunderstanding that has lead to the
Dragon's graphics quality being criticised when things are moving on the
screen and the claim made by some programmers that PMODE 4 gives better
results!

Before leaving the topic of DRAW it is worth pointing out that
alphanumeric characters are just a special case of small solid objects and the
techniques described above can be used to give both upper and lower case
characters to Dragon high resolution graphics.

GET and PUT: user-defined characters

Of all the graphics commands on the Dragon, GET and PUT seem to be the
most powerful and the most mysterious. Using GET you can save any
rectangular area of the screen in an array and can then use PUT to produce
new copies anywhere on the screen. In practice the need for these two
commands is less than you might expect. It is often easier and faster to
re-draw the shape then to use GET and PUT to reproduce it. However, a little
knowledge of how the two commands actually do their jobs leads us on to
ways of using them that the Dragon manual never hints at.

What happens when you use GET depends on whether you end the
command with 'G' or not. If you use the GET command without 'G' then all
that happens is that the display information within the specified rectangle is
read into the array memory location by memory location. In other words, GET
transfers whole screen memory locations into the array. For example if you
GET a 6 by 6 square into the array A in PMODE 4 using

GET 10,01-15,51,A
then six memory locations within the array will be used. The first will store the
screen memory location that holds the to row of six dots within the rectangle,
the second will store the screen location that holds the second row of dots
and so on down to the sixth row of dots. Now in PMODE 4, or in any two
colour mode, a screen memory location determines the colour of eight dots
so although you might think that the GET instruction will only store the
information about the six rows of six dots within the rectange you actually
store information on six rows of EIGHT dots whether you like it or not!

76

Chapter 6 Advanced Graphics

This idea of saving whole screen memory locations is quite a tricky one so it
is worth looking at the way the screen memory locations affect what is
displayed on the screen. Although the memory maps for the different
graphics modes have been discussed in Chapter 4 their meaning might not be
clear enough for you to follow what is happening with GET. In a two colour
mode, each memory location within the screen area determines the colour of
eight dots. In the same way, in four colour mode each memory location
controls that colour of four dots on the screen. What the memory map
equation in Chapter4 does is to take the co-ordinates of any dot on the screen
and give you the address of the memory location that determines its colour.
While this is useful, it doesn't really help you to imagine how the memory map
corresponds to screen locations. If you imagine the screen as made up of
horizontal rows of dots then, in a two colour mode, the first eight dots in the
top row are controlled by the first screen memory location, the next eight to
their right by the second memory location and so on to the end of the row. ln a
four colour mode the correspondence is the same but with groups of four
dots rather than eight. When you move down to the screen to the second row
of dots the pattern is repeated, and so on to the very bottom of the screen. To
see this process in action in a two colour mode try the following program

10 PMODE4
20 PCLS
30 SCREEN 1 , 1
40 A = &HFF
50 B =0
60 1 =0
70 FOR X= &H600 TO &H600 + 4*&H600 STEP 2
80 1 = 1 + 1
90 POKE X,A:POKE X + 1 , B

100 FOR K = 1 T O 100 :NEXT K
110 IF I = 16 THEN I = A:A= B:B = l : r=0
120 NEXT X
130 GOTO 130

What this program does is to POKE all ones or all zeros into alternate scree;i
locations so that you can see the group of eight dots that each controls. You
should be able to see that the screen is divided into 32 columns, each eight
dots wide. If you want to see the pattern for a four colour screen then change
line 10 in the last program to read 10 PMODE3. You will seethe same pattern,
only now each of the lines contains only four screen dots.

77

The Anatomy of the Dragon

These groups of eight or four dots that are controlled by a single memory
location are very important to the understanding of the way GET and PUT
work. If a screen memory location controls even one of the dots within the
GET rectangle then the whole memory location is saved in the array and this
means that all the information about the other points that it controls is saved
in the array. In this sense you can imagine the rectangle as a sort of frame that
is placed on the screen and any screen memory location that is even partially
within it is stored in the array.

The screen locations are stored in the array in row order in the same way
that the screen memory locations correspond to screen positions. That is, the
memory locations from the first row within the rectangle are stored in the
array first, working from left to right, then the second row and so on. If you
have used GET to store graphics information in an array, you will have found
that when you try to examine the contents of the array you find mainly zeros.
The reason for this is that GET uses the array in a way that completely ignores
the way the array, or even standard BASIC numbers, are stored. The details
of how BASIC stores arrays aren't dealt with until Chapter 8 and all you need
to know now that when you dimension an array BASIC sets aside an area of
memory large enough to store all the elements of the array. So, for example,
DIM A(25) reserves 26*5 memory locations because the array has 26
elements and each element (a real number) needs 5 memory locations.
Similarly DIM A(9,9) reserves 100*5 memory locations. As far as the GET and
PUT commands are concerned, the BASIC arrays are used as areas of
storage. No use is made of the fact that the array is one- or two- dimensional.
So, as far as GET and PUT are concerned, DIM A(l ,41 and DIM A(9) provide
the same amount of storage (i.e. 50 memory locations) and the screen
memory locations are simply stored one after the other in this area of storage.

Now although the Dragon manual suggests that if you want to GET a
rectangle with n*m points in it, you need an array DIM A(n,m) this is in fact a
gross over-provision of memory. It will always work but it is always too much!
If you want to GET a screen rectangle n*m into the smallest array that will hold
it all you have to do is to work out how many screen memory locations are
within the rectangle and dimension an array that reserves this many memory
locations. This is, of course, not an easy calculation but even an
approximation saves a lot of memory. For example if you are GET ting a 5 by 5
rectangle in PMODE 4 the largest number of memory screen memory
locations that this involves is ten (i.e. two screen memory locations per row)
so the array can be as small as DIM A(l) i.e an array with two elements. If you

78

Chapter 6 Advanced Graphics

follow the Dragon manual's recommendation you would have to reserve an
array DIM A(5,5 l i.e. 25 array elements or 25"5 memory locations!

A consequence of GET storing whole screen memory locations is that PUT
restores whole memory locations. This means that if you GET a rectangle that
includes part of a screen location, when you PUT it back anywhere else on the
screen all of the memory locations that were stored in the array are restored to
the screen and so an area outside of the rectangle that you specified in the
PUT is altered. What is worse, PUT restores the screen memory locations in
the same way as GET stored them and this means that if the PUT rectangle
happens to overlap fewer or more screen memory locations than the GET
rectangle did the result will be a confused mess! This fact is usually ignored in
descriptions of how GET and PUT work together but if you want to check that
it is true, try -

10 PMODE 4
20 PCLS
30 DIM A(l 0)
4 0 SCREEN 1 , 1
50 LINE I0,0)-I7,5 I,PSET,BF
60 GET 17 ,0 I-I12,5 I,A
70 PUT I12,50)-I17,55),A
80 GOTO 80

lf you try to predict what this program will do you might be surprised when
you run it. Line 50 draws a small solid square with corners at0,0 and 7 ,5. The
GET statement should store screen information in A from within a square with
corners at 7 ,0 and 12,5. This GET square only overlaps the solid square in a
small vertical strip one dot wide, i.e. the line from 7,0 to 7,5. (If you are
confused try drawing things out on graph paper.) When you PUT the
information back on the screen all you would expect to see is this vertical
strip. What you in fact see is the whole of the small square reproduced at the
new location! The reason for this is, of course, that the GET doesn't store
information just from within the area specified, it stores whole screen
memory locations. If you think about the memory map for PMODE 4 you will
realise that the GET area just overlaps two columns of adjacent screen
locations. For example, the first screen memory location determines the
colour of the first eight dots in the top left hand corner of the screen and the
GET area includes the eight dots on the top line, so this whole screen memory
location has to be stored along with screen location two, which determines
the colour of the next eight dots that also fall within the square. The situation
can best be summed up by Fig 6 . 1 ,

79

The Anatomy of the Dragon

y

0

r

d

0

0 •

1 •

2 •

3 •

4 •

5 •

6

7

8

9

X co-ordinate
1 2 3 4 5

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

screen memory
locations

6 7 8 9 10 1 1 1 2 1 3 1 4 1 5

r - ---------,-
• ! • • • • • . 1 .

I
• •

I
. 1 • • • • • • I • • •

• l e • • • • • : • • •

• l • • • • • • I • • •

• I • • • • • . 1 .
I

• •

• l •
I • • • • • • I • •

- __________ J_

\GET area

Fig 6.1 The action of GET

1

from which you can see that although the 'GET area' is small, it in fact GETs all
the 12 memory screen memory locations that it overlaps. (Remember that in a
two colour mode a screen location determines the colour of a single row of
eight dots. I

To overcome this problem there is a second form of both the GET and the
PUT command. If you follow the GET command with a G then, instead of
storing whole memory locations, each dot on the screen is treated separately
and the bit or bits that control it are 'packed' into the array. The original
groupings into eight or four dots controlled by the same screen memory
location are completely ignored. This means that the only graphics data that
is stored in the array comes from within the area defined by the GET rectangle
and the PUT command only alters the area of the screen within it's specified
rectangle. To see this add G to the end of the GET command in the last

80

Chapter 6 Advanced Graphics

example and PSET to the end of the PUT command and you will see that
instead of a square appearing at the new location all you get is the vertical line
that was predicted! All in all it is easier to predict the result of a GET command
ending in G than the result of a GET command that doesn't! For this reason it
is better to always to use the G unless you have a good reason for not doing
so.

To summarise
The GET command works by storing whole screen memory locations into

an array row order and from left to right. The PUT command simply transfers
these memory locations back to the screen wherever they are required. If
you follow the GET command with a G then screen memory locations are
ignored and the screen information is stored in the array dot by dot and no
information outside the GET rectangle is stored. In this case the PUT
command will not affect anything outside it's specified rectangle.

As a side effect the GET and PUT commands are slower when G is specified
but you can use additional commands in PUT, such as PSET, NOT etc to
determine how the information will be restored to the screen.

All this is a little complicated to follow as it requires a good understanding
of the format that is used to store screen data. If you want to examine the
contents of an array that has been used in a GET to check that you understand
how the information is stored, use -

1000 FOR I= VARPTRIAIOII TO VARPTRIAldll + 5
1 0 1 0 PRINT PEEKIII;",";
1020 NEXT I

where dis the maximum dimension of the array A (i.e. DIM A(d)). This routine
will dump the contents of each screen location that forms the array. If you
want to know how it works then look up the definition of VARPTR in the
Dragon manual. More information about the format of arrays and other data
storage is given in Chapter 8.

Apart from explaining the odd things that can happen if you use GET
without a G at the end, knowing how the GET and PUT commands work
seems a little academic. However, now that we know the data format used by
the simple GET command we can store data directly into an array to define
the shape that would be produced by a PUT. In other words, we can PUT an
array that contains graphics data that has never been the subject of a GET

81

The Anatomy of the Dragon

command. This opens the door to another way of producing user-defined
characters.

The easiest way of working is with the GET command without the final G
and hence in terms of complete screen memory locations. The reason for this
is that it is very easy to define the bit pattern of a single memory location and
then use PUT to transfer this bit pattern to a screen memory location and thus
to a pattern of dots. To avoid problem with PUT rectangles overlapping
different numbers of screen memory locations as it is moved about the screen
we also have to restrict ourselves to placing the PUT rectangle over whole
screen memory locations. This corresponds to making sure that the top left
hand corner of the rectangle is always at an x co-ordinate that is exactly
divisible by 8. For example, if we want to define the disk shape used in the
DRAW example given earlier we need to work with the screen divided into 8 x
8 squares. (The disk has eight rows and a maximum of eight dots in a row. l A
program to both define the disk and 'bounce' it around the screen it given
below -

10 PMODE4
20 PCLS 0
30 SCREEN 1, 1
40 DIM A(7), B(7I
50 V = VARPTR(A(0 II
60 POKE V,&H3C
70 POKE V + 1,&H7E
80 POKE V+2,&HFF
90 POKE V + 3,&HFF

100 POKE V+4,&HFF
1 10 POKE V+5 ,&HFF
120 POKE V + 6,&H7E
130 POKE V +7,&H3C
140 V = 8
150 W =8
160 X = X + V
170 Y = Y + W
180 PUT (X,Y)-(X+ 7,Y + 7),A
190 IF X> =247 OR X< =0 THEN V = -V
200 IF Y> = 183 OR Y< =0 THEN W = -W
210 PUT (X,Y)-(X+ 7,Y + 7 I, B
220 GOTO 160

82

Chapter 6 AdvBnced Graphics

Lines 50 to 130 define the dot pattern of the disk by storing the bit pattern for
each row into the memory locations reserved by the array. If you convert each
hex number to binary you will see that each one defines the dot pattern in a
row of the disk (i.e. 0 gives a black dot and 1 gives a white dot.) The bit
patterns are stored in successive memory locations within the array A, the
first location of which is found using the VARPTR function. When A is PUT to
the screen, each of its memory locations are transferred to the screen in turn
to produce the image of the disk. If you want to see why the PUT rectangle
has to be placed exactly over a block of eight screen locations change line 140
to 140 V = 7 and watch the chaos that follows.

Even if you haven't followed all of the details of how GET and PUT work
you can still use the above method of defining characters directly. It is very
fast and particularly useful for converting programs from machines that do
have user·defined graphics.

Joysticks and lightpens

One of the first accessories that most people buy to use with the Dragon is a
pair of joysticks. These are very easy to use as Dragon BASIC includes the
JOYSTK function to read their position. However, there-is no built in
function to read the state of the fire buttons. This omission can easily be
remedied. The following user-defined function will test the state of the fire
buttons

DEF FNBISI = IPEEKl&H FF00I AND SI/S
FNB(1 l changes from 1 to0 when the fire button on the left joystick if pressed
and FNB(2) changes similarly for the right joysticks button.

Using the joysticks to control the position of a point on the high resolution
screen is simply a matter of reading the joysticks and using PSET and
PRESET to plot and unplot points. Try -

10 PMODE4
20 PCLS
30 SCREEN 1, 1
40 X = JOYSTKI0 l*4
50 Y = JOYSTK(1 1*3
60 PSETIX, YI
70 PRESETIX, YI
80 GOTO40

83

The Anatomy of the Dragon

Notice that it is necessary to scale the inputs from the joysticks to make sure
that you can reach all parts of the screen. To make the joysticks less sensitive
to slight random movements it is a good idea to read each one a few times and
take the average. There is a simple way of doing this that combines this
averaging with the scaling procedure. Change line 50 and 60 to -

50 X = JOYSTK(OI + JOYSTK(O) + JOYSTK(O) +JOYSTK(O)
60 Y = JOYSTK(l I + JOYSTK(l) + JOYSTK(l)

If you want to draw on the screen then remove line 70. You may be
disappointed to discover that the lines that you draw are rather dotted! The
trouble is that the joysticks can be moved so fast that the plotted point jumps
around the screen without 'visiting' any of the points in between. The
solution to this problem is to draw continuous lines between each of the
plotted points using the DRAW command. Change line 60 to -

60 ORAW "M" + STR$(X) + "," + STR$IYI

and your sketches will look a lot better.

For many applications, a light pen is a better input device than a joystick.
Although there are light pens on the market for the Dragon there is a
fundamental limitation built into its hardware that limits that way that such
pens can be used. Most other computer systems that use light pens keep an
internal count of which line on the screen is being displayed. If you recall how
a TV picture is built up by a scanning bright dot, then you will be able to see
that at any one moment in time there is only one point on the TV screen that is
very bright. (We see a TV picture only because our eyes are not fast enough to
follow the scan.) If you point a light pen at a TV screen then it will pick up a
pulse when the scanning spot passes beneath it. By looking at the internal
count of the line being currently displayed when the pulse is detected the
computer can work out where on the screen the light pen it. The trouble is
that the Dragon doesn't keep a count of the line that is currently being
displayed anywhere that the user can get at it so this traditional sort of light
pen will not work.

What you can do is to connect a light sensor to the joystick input (how will
be explained in the next chapter) and use this to detect the light level on the
TV screen. To know where the light pen is on the screen you have to set up
areas that are flashed on and off at given times. If the light pen is pointing at
one of these areas then you can pick up the variation in the light input when
the area is flashed. In this way you can work out which area the pen is pointing

84

Chapter 6 Advanced Graphics

at. This sort of light pen is very good for picking one of a number of options
from a menu but not for drawing freehand on the screen.

What the Dragon lacks

At this point it is perhaps appropiate to consider what the Dragon can and
cannot do as regards graphics. The simple answer is that if you are happy with
two or four colours the Dragon is an excellent machine. What is lacking are a
few simple software features that would make the programmer's life so much
easier. For example, the high resolution graphics modes are so much easier to
use than the semi-graphics and text modes that the Dragon would almost be
better off without semi-graphics and text! It is perfectly possible to imagine a
Dragon that uses the high resolution modes to list programs, to print out on
and to accept input. Some extra software to provide user-defined characters
and to print them on the screen would complete the picture of a more versatile
Dragon. The strange thing is that this is all possible without a single hardware
modification!

85

Chapter Seven

Interfacing

The subject of interfacing is a very wide one which covers connecting
almost any piece of electronic equipment to any other. However, in this
chapter our examination of interfacing will be limited to the ways in which the
Dragon can be connected to the outside world. The Dragon has a number of
such connections and the way that they work and what they do is quite
diverse. However, apart from the expansion port they all make some use of a
6821 PIA and so this chapter starts with a discussion of this particular
component. Then, the way that the two PIAs within the Dragon are used is
explained. Some of these uses have already been described in previous
chapters but there remain a number still to be discussed, including -

The keyboard, the printer port, the joystick inputs, and the cassette
interface.

Finally the details of the expansion port are given.

Many of the technical details given in this chapter will also help you to
understand features of the Dragon involving the PIAs that have been already
described. Unless you have missed the number of times that the PIA has
cropped up so far, you will not need convincing that it is a chip worth
studying!

The6821 PIA

A single 6821 PIA provides sixteen general purpose lines that can be used
for either input or output and four special control lines. As has already been
described in Chapter 2, these lines are grouped into two lots of ten - the A side
and the B side. The A side is composed of eight general purpose input/ output

86

Chapter 7 Interfacing

lines usually called PAO to PA7 and two of "the special purpose control lines
usually called CA 1 and CA2. Similarly, the B side consists of the remaining
eight general purpose lines and the two remaining control lines called PBO to
PB7 and CB1 and CB2 respectively. (See Fig 2.6 in Chapter 2.1 The way that
the control lines CA1, CA2, CB1 and CB2 can be used is the most
sophisticated and complicated aspect of the PIA. Fortunately as far as the
Dragon is concerned much of this complication can be ignored because the
control lines are used in fairly simple ways. Likewise the fact the any of the
sixteen lines PAO to PA7 and PBO to PB7 can either be used as an input or an
output is largely academic as in most cases the Dragon sets them to one or the
other when it is first switched on. The final point to make about the PIA is that
all its lines, input, output or control, work with O and 5 volts. In other words an
output line can be in one of two states: low at O volts or high at 5 volts.
Likewise an input line, if properly used, should only have O volts or 5 volts
applied to it. Anything higher or lower is likely to damage the chip and
anything in between will give unreliable results.

From the programmer's point of view a PIA looks like four memory
locations as shown below -

s + 3

s + 2

s + l

B control register
B data register

A control register
A data register

As you can see, the first two locations are concerned with the A side and the
last two the B side. The A side data register is best thought of as a normal
memory location which, in addition, is conn0cted to the lines PAO to PA7.
Each of the eight bits of the data register bitO to bit 7 is associated with the line
of the same number. That is, bit O is associated with PBO, bit 1 is associated
with PB1 and so on. The effect of this association depends on whether the
line is used asan input orasan output. For an input line the state, i.e. 0 or 1, of
the corresponding bit in the data register depends on the voltage applied to
the line. If the voltage is high (5 volts) then the bit is a 1, otherwise, if the
voltage is low (0 volts) then the bit is a 0. Thus by reading the data register you
can find out the voltage applied to any input lines by examining the
corresponding bits. For an output line the state of the line is also determined
by the state of the corresponding bit. In other words, if the bit isO then the line

87

The Anatomy of the Dragon

is low at O volts and if the bit is 1 then the line is high at 5 volts. Thus by writing
to the data register you can set the state of an output line.

In this description of the way that the data register you may have noticed
the way that the PIA's O and 5 voltsseemedto pairnaturallywith the O and 1 of
binary. This is not an accident, just a reflection of the way all computer
hardware uses two voltage levels to represent the two states corresponding
to O and 1 .

The two control registers also behave like normal memory locations, only in
this case the state of each of the eight bits controls some aspect of the way
that the P1A works. The format of the two control registers is roughly the
same and can be seen below -

b7 b6

IRQ 1 IRQ 2
CA/B 1 CA/B 2

b5 b4

CA/B2
control

b3 b2

DDR

bl bO

CA/B 1
control

Bits 3,4 and 5 control the way that either CA2 or CB2 operates. There are
sixteen different operating modes possible for CA2 but fortunately the
Dragon always uses CA2 and CB2 as outputs in the simplest possible way. (If
you want to know more about the ways that CA2 and CB2 can be used then
get hold of a full6821 data sheet.) In thismodebits4 and5 aresetto 1 and bit3
acts as the controlling bit for CA2 or CB2 as an output line - that is, if bit 3 is 1
the line is high and if it is O the line is low. As far as the Dragon is concerned
this is theonly waythatwecan use the CA2 and CB2 lines. BitsO and 1 control
the way that the CA 1 and CB1 lines work and in this case the Dragon allows us
a little more freedom. The CA 1 and CB1 lines are always input lines but they
are different from any other input lines that we have looked at because they
are 'edge triggered'. What this means is that instead of responding to the
voltage applied to them they respond to a change in the voltage applied to
them. lf the voltage changes from O to 5 volts, this is called a 'rising edge' and
if the voltage changes from 5 to O volts this is called a 'falling edge'.
Depending on the setting of bit 1, the CAl and CB1 inputs can be made
sensitive to rising or falling edges -

bit 1 triggered by
falling edge
rising edge

88

Chapter 7 Interfacing

When one of the inputs detects a voltage· transition that it has been set to
respond to, all that happens is that bit 7 in the control register is set. So if you
bok at bit 7 you can tell if the input line has detected either a rising or a falling
edge. This leads to the question, how is bit 7 reset to 0. Bit7 is set to 1 when
the the input is triggered but it is NOT set to 0 by a subsequent triggering, nor
is it set to O by a voltage transition in the opposite direction. Once bit 7 is set to
1 by the input line it remains set to 1 until the associated data register is read.
This may seem like an odd way of setting a bit to 0 but it makes very good
sense when you consider the sorts of applications that CA 1 or CB1 are used
for. For example, if you wanted to use the A side data lines PAO to PA7 as
inputs from another computer you could use CA 1 asa signal that the data was
ready to be read in. Changing the voltage on CA 1 would set bit 7 in the A
control register and this would be taken as a signal that the data was ready on
the input lines PAO to PA7. Reading the A data register would then
simultaneously get the data into the computer and clear bit 7 ready to be set
by the next triggering on CA 1 , indicating that there was some more data to be
read in.

Bit0 controls whether or not the setting of bit 7 causes an interrupt or not.
Interrupts are something that most BASIC programmers never meet because
they are more to do with the workings of the hardware than of high level
languages. However, the idea behind an interrupt is not difficult to
understand. Normally the 6809 CPU inside the Dragon is busy doing
something like running your BASIC program or dealing with the letters that
you are typing at the keyboard. When it receives an interrupt it stops what it is
doing, saves enough information so that it can pick up where it left off and
goes to do something else for a while. When it has finished this other job it
returns to the original task. More technically, stopping what it is doing to start
the other job is known as 'servicing the interrupt', the other job is called the
'interrupt routine' and returning to the original job is called 'returning from the
interrupt'. The Dragon makes use of interrupts to provide the BASIC function
TIMER, but more of this later. In general, interrupts are easy to understand
but quite difficult to work with. For one thing you need to use assembly
language and for another they are usually very involved with the way the
machine works. Interrupts are disabled if bit 0 is 0 and enabled if bit 0 is 1 .
Unless you know what you are doing interrupts are best left for the Dragon to
sort out!

There are only two bits left to explain in the control register, bit 6 and bit 3.
Bit 6 works with CA2 and CB2 when they are set up as inputs in much the
same way that bit 7 works with CA 1 and CB 1 . However, as has already been

89

The Anatomy of the Dragon

pointed out, the Dragon always uses CA2 and CB2 as outputs and so bit 6 is
never of any use! Bit 3 gives access to another pair of registers within the PI/
that are normally hidden from view - the data direction registers. These
occupy the same addresses as the A and B data registers so you can either get
at the data registers or the data direction registers but not both. It is therefore
fortunate that the need to access them at the same time never arises because
the data direction registers are used to determine whether the data lines are
inputs or outputs. The way that this works is that each bit in the data direction
register corresponds to an output line- i.e. bit0 corresponds to PAO etc. A line
isan output if its bit in the data direction register is 1 and an input if it is 0 . Thus
by setting and resetting bits in the data direction register, a PIA can be made
to have any combination of inputs and outputs that we need. Of course, the
Dragon has already decided whether a line is an input or an output in most
cases and so the data direction register doesn't usually concern us. But there
are exceptions - see the section dealing with single bit sound in Chapter 5 for
an example where this is not the case. If bit 3 is 1 then the A or B data register
is selected and if it is 0 the data direction register is selected.

This is all there is to know about the 6821 PIA as far as the Dragon is
concerned. In fact the onty thing that has been left out in this description is the
way that the CA2 and CB2 lines can be used as inputs (because the Dragon
always uses them as outputs). If you want to know everything that there is to
know about the PIA then this missing information should be easy to follow
from a 6821 data sheet once you have read the rest of this chapter. Now it is
time to move on from the theory of how the PIA works to the practical aspects
of the way the Dragon uses it.

The Dragon's PIAs

The Dragon uses two PIAs to control not only a wide variety of
input/output devices but also various aspects of its own working! We have
already discovered some of the uses of the PIA output and input lines in earlier
chapters and now it is time to give a complete list (see table 7 .1) -

You should be able to see from this table that the PIA lines can be grouped
according to what they do. The only line that will not be described any further
is PIA 1 's PA2 which is used to set the SAM chip to either 1 6 K or32 K of RAM.
As the Dragon always has 32 K of RAM this line is somewhat redundant!

90

FFOO
FF01
FF02
FF03

A side

PAOto PA6
(PAO & PA1 I

PA7

CA1
CA2

B side
PBO to PB7

CB1
CB2

FF20 A
FF21 A
FF22 B
FF23 B

Chapter 7 Interfacing

Table 7.1

PIA O
A side data register
A side control register
B side data register
B side control register

1/0 function described/
used in
Chapter

Keyboard row input 7
also used for fire button
input 6,7
Joystick A to D comparator
input

I TV line sync pulses
0 Sound source-joy stick

selectbO

0 Keyboard column output
and printer interface

I TV frame sync pulses
0 Sound source-joystick

select bit 1

PIA 1
side data register
side control register
side data register
side control register

91

7
7

5,7

7
7

5,7

(continued)

The Anatomy of the Dragon

A side 1/0 function described/
used in
Chapter

PAO I Cassette input data 7
PA1 0 Printer strobe output 7

PA2 to PA7 0 Sound generator (D to A) 5
CA1 I Printer acknowledge 7
CA2 0 Cassette motor control 7

B side
PBO I Printer busy signal 7
PB1 1/0 single bit sound/sound

sense 5
PB2 I Ram size 16K/32 K select 7
PB3 0 Colour set select to video

gen. 3,4
PB4 0 GMO to video gen 3,4
PB5 0 GM 1 to video gen 3,4
PB6 0 GM2 to video gen 3,4
PB7 0 Alpha/Graphics to video

gen 3,4
CB1 I Cartridge detect 7
CB2 0 Sound enable to TVS

Setting PIAs - the use of AND, OR and NOT.

Now that we know what each bit in the PIA control and data registers is for,
we can begin to experiment and alter them. In assembly language and
machine code this altering of individual bits is usually called 'bit manipulation'
and there are special instructions for just this purpose. However, BASIC
doesn't even recognise that binary numbers exist let alone individual bits!
This is not a criticism of BASIC as it was never intended to be used for such
advanced applications • after all it was originally a teaching language. For a
beginner, the great advantage of BASIC is that it keeps bits and binary

92

Chapter 7 Interfacing

numbers well hidden. The question is how can we go about altering individual
bits using BASIC. Fortunately, Dragon BASIC does provide sufficient
facilities to make this possible. In particular the logical operators AND, OR
and NOT, apart from being useful in IF statements, can be used for bit
manipulation. But first it is worth examining in detail the way that a hex
number can be converted to binary and vice versa.

Hexadecimal number were briefly introduced in Chapter 2 as a way of
specifying memory locations. One of the reasons for using hex numbers is
that they are very easy to convert to binary and vice versa. As the Dragon will
accept hex numbers and not binary numbers it is useful to be able to convert
from one to the other using some simple rules -

Hex to binary

Each hexadecimal digit corresponds to four binary bits as follows -

Hex binary
0 0000

1 0001

2 001 0

3 001 1

4 0100

5 0101

6 01 1 0

7 0 1 1 1

8 1 000

9 1 001

A 10 10

B 1 0 1 1

C 1 1 00

D 1 1 01

E 1 1 10

F 1 1 1 1

Given a hex number, look up each digit in the table and write down the four
bits in its place. For example, E2A4 in hex is -

E
1 1 1 0

2
001 0

93

A

10 10

4
0100

The Anatomy of the Dragon

Binary to Hex -

To convert a binary number to hex just divide the binary number into groups
of four starting from the righthand side. If the final group of bits is less than
four then add zeros to the left to make up the number then look up the hex
digit that each group corresponds to in the table given above and write them
down in the same order. For example, 10 1001 1 is -

10101 1
5

1001 1 1
3

Notice that as one hex digit corresponds to four binary bits it only takes a two
digit hex number to specify all eight bits in a memory location.

Now that we know how to convert between binary and hex we can look at
the problem of bit manipulation. Suppose, for example, that we want to set
bit3 to a 1 in a PIA data register. You might think that all we have to do is store
(POKE) 00001000 (remember we number bits starting from bit 0) in the
register but this would not only set bit3 to 1 it would set all the other bits to 0 l
Obviously we have to find some way of changing bit 3 without altering any of
the other bits. The answer is to use the BASIC operator OR. This can be used
to combine two numbers together rather like addition or any other arithmetic
operation. The result of A OR B is obtained by taking each pair of bits one
from A and one from B and working out a single bit of the result using

A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

For example, if A is 0 1 0 1 and B is 1001 the result of A OR B is 1 1 0 1 . In other
words, there is a 1 in the answer if there was a 1 in the same place in either A or
in B. Using this idea you should be able tb see that to set bit 3 in the data
register without altering any other bits all we have to to is read what is already
in the data register and then OR it with 00001000. The result will have a 1
wherever the original contents of the data register did and a 1 in bit3 no matter
what was already there. The final BASIC command to set bit 3 to 1 is -

D - PEEK(sl OR &HOB POKE s,D
where the first line works out the value that has to be stored in the data
register whose address is s and then the next line actually stores it there.
Notice the use of the hex equivalent of 00001000 in the first line.

94

Chapter 7 Interfacing

Similarly to set a bit to0 without altering any of the other bits we have to use
the AND operation. This works in the same way as OR except that - there isa
1 in the answer only if there was a 1 in the same place in both A and B.
So, for example, 0 10 1 AND 100 1 is 000 1 . Now supposewewanttosetbit3 to
0 this can be done by AN Ding 1 1 1 10 1 1 1 with the current contents of the data
register. Bit 3 will be set to 0 no matter what its current value is but the other
bits will not change. The resulting BASIC is -

D- PEEK(sl AND &HF7
PDKE s,D

If you look at the above example you will notice that 1 1 1 1 0 1 1 1 is the same as
00001000 but with 0 written for 1 and 1 written for 0. You can make this
change automatically using the BASIC operator NOT. The result of NOT A is
simply obtained by writing 0 for 1 and 1 for 0 for each bit of A. For example,
NOT 10100 is 0 10 1 1 . The example of setting bit 3 to 0 can now be written -

D- PEEK(sl AND NOTl&H0BI
POKE s,D

To generalise these ideas, you can set any group of bits to 0 or 1 in exactly
the same way. For example, to set bit 7, bit 3 and bit O to 1 all you have to do is
OR the original value with 10001001 or &H89. To set the same bits to 0 you
would ANO the original value with NOT{&H89). Once you get used to these
functions, bit manipulation from Dragon BASIC is easy.

There are two other simple operations that are worth knowing about. If you
multiply a binary number by two this is equivalent to moving all the bits one
place to the left and adding a zero to the right. For example, 101 10 * 2 is
101 100. In the same way dividing by two is the same as moving all the bits to
the right and 'chopping' off the rightmost bit. For example, 101 10/2 is 101 1 .
In other words, multiplying by two is a 'shift left' operation on a bit pattern an
dividing by two is a 'shift right' operation on a bit pattern. You will find many
examples of the use of AND, OR, NOT, multiplying by two and dividing by
two in earlier chapters of this book and a few more are yet to come. If you find
the ideas of bit manipulation difficult on the one hand or interesting on the
other then the best advice I can give is to read something on the theory of
binary numbers. Now why you know that such things are important you
should find the theory relevant and useful.

The keyboard

The Dragon's keyboard is a very simple affair from the point of view of
electronics, (see Fig 7 .1) The keys are arranged so that pressing one will

95

Joystick t dive buttons

PIA0 I + + 1 _6
S(

A B C D E F G
PAD

I J K L M N 0 g

p Q R s T u V w

X y z j t - - space

"' PAG I \\ \' 1 0 , , 2" 3 lf 4$ 5% 5& i "'

al 9) :
.

; + < - � > I
?

ENTER CLEAR BREAK Shift

Fig 7.1 The Keyboard

Chapter 7 Interfacing

connect one of the eight output lines from PIA 0 to one of the seven input
lines. The keyboard is read by looking at each column of keys in turn. The
output line of the column that is being examined is set to low and all the other
lines is set high. If a key is pressed in that column then the input line
corresponding to the row that the key is in will be connected to the low
column line. This will cause a zero to appear in the input line's data register.
All the other lines are high because either they are not connected to any
output lines (if an input line is not connected it 'floats high') or they are
connected to a high output line. Thus, if you set a column line low and read
the input line's data register, any zeros correspond to keys that have been
pressed in that column. By scanning through each column output line
one-by-one the whole keyboard can be read.

This scanning and reading is carried out by software in the BASIC ROMs
but, if we want to, the keyboard can be read directly from BASIC. For exam­
ple, if you want to read the keys on column 0 all you have to do is set bit 0 of
the B side data register to 0 and the rest to 1 and then read the A side data
register. Try -

10 POKE &HFF02,&HFE
20 PRINT HEX$(&HFF00 I
30 GOTO20

You will find that the number printed out changes as you press different keys
on the keyboard. The only trouble is that the number changes when ANY key
is pressed on the keyboard not only when keys in column one are pressed!
The reason for this is that at the end of every BASIC statement a routine is
called that checks to see if the BREAK key has been pressed and this is
altering the setting of the PIA in between the POKE and the PEEK. The only
solution is to disable the break key scan routine. How this is done involves an
understanding of assembly language and so is beyond the scope of this book,
being one of the topics covered in its companion volume, "The Language of
the Dragon". Meanwhile, even if you cannot fully comprehend it, the follow­
ing subroutine will disable the break key -

1000 POKE &H19B, &HE4
1010 POKE &H19C,&HCB
1020 POKE &H19D,&H04
1030 POKE &H19E,&HED
1040 POKE &H19F, &HE4
1050 POKE &H19A,&HEC
1060 RETURN

97

The Anatomy of the Dragon

and the following routine will enable it -
2000 POKE &H19A,&H39
2010 RETURN

If you add 5 GOSUB 1000 to the start of the previous program (along with the
lines of BASIC that make up subroutine 1000!) then the program will work as
predicted in that only the keys in column 1 will alter the number returned by
the PEEK. To stop the program you will have to press the reset button
because the BREAK key will have no effect! You can use the BREAK
disable/enable routines for other purposes but note that the BREAK key will
always work during an INPUT. The direct reading of the keyboard can be
useful in games because you can detect more than one key press at a time. To
see this try pressing more than one key at a time while running the last
example.

There is one annoying feature of the Dragon's keyboard, namely the lack of
a repeat key, that it is possible to do something about with software. For
many reasons a repeat facility on a keyboard makes it much more useful.
When the keyboard is scanned the state of the keys in each column is stored
in a different memory location, collectively known as the keyboard rollover
table at &Hl 50 to &Hl 59. A key press will only be recognised if it changes
what is already stored in the rollover table. This is the reason that the
Dragon's keys do not auto-repeat. When you press a key this sets a 0 in the
corresponding location in the rollover table. If you keep the key pressed
nothing changes and so the fact that the key is pressed is ignored. To register
another keypress you have to release the key so that the bit in the rollover
table is set back to 1 and then press it again. It is possible to created an
auto-repeat facility by simply regularly setting the rollover table to all 1 s. First
try the following program -

10 A$ - INKEY$
20 IF A$ - "" THEN GOTO 10
30 PRINT A$
40 GOTO 10

If you press a key and keep it pressed you will only see one character appear
on the screen. To make another character appear you have to release and
press the key again. Now add the following lines to the program -

35 GOSUB 1000
1000 FOR 1 - 0 TO 9
1010 POKE &H150+ I,&HFF
1020 NEXT I
1030 RETURN

98

Chapter 7 Interfacing

You will find that all the keys now auto-repeat once for every execution of
subroutine 1000. This technique is absolutely essential if you are trying to
write games in BASIC that involve using the keyboard and cursor keys to
move objects on the screen. (See "The Dragon 32 Book of Games" by Mike
James, S M Gee and Kay Ewbank for many examples where this technique is
put to good use.)

It is possible to use the same technique to add auto-repeat to the Dragon
for entering and editing programs but this requires the use of assembly
language and a knowledge of interrupts and therefore cannot be fully
explored in this volume. We will however return to this problem a little later in
this chapter.

The printer interface - a user port.

The B side of PIAO serves a dual purpose both as the keyboard column lines
and as the eight output lines used by the parallel printer interface, see Figure
7 .2. There is no conflict between these two uses because the keyboard is
never in use when the printer is and vice versa. To be more exact, the printer
output lines are active when the keyboard is being scanned but the printer
ignores them because the lines that indicate that it is being used are handled
by PIA 1 and are inactive. Similarly, when the printer is in use the keyboard
column lines are active but the Dragon is busy printing and doesn't bother to
read the keyboard inputs. Either way, the printer and keyboard sharing the
same output lines does no harm and it certainly enhances the Dragon to have
a printer port.

The use of the printer interface is fully catered for by Dragon BASIC with
LUST to list a program and PRINT # -2 to direct output to it. However there
are a number of memory locations that affect the way the software printer
drivers work that are worth knowing about, see table 7 .2.

Most of these memory locations are self-explanatory. For example, if you
want the Dragon to send carriage return and a line feed at the end of each line
then POKE &H 14A,2 will do the job.

What is more interesting about the printer interface is that it gives us the
opportunity to use eight output lines for connection to other pieces of equip­
ment. In this sense the printer interface can be used as a sort of primitive user
port. Obviously the details of such a connection depend on the equipment

99

The Anatomy of the Dragon

(PIA O)
PB7

PB0

74LS
244

Buffer

CA1

PA1
(PIA 1)

Data 7
Data 6

Data 5

Data 4

Data 3

Data 2

Data 1
Data 0

Strobe

Pins 6,8, 10, 12, 14, 16, 18 all 0 volts
Pin 2,4 + 5 volts

Fig 7.2 Printer Interface

100

Pin no

20
19

17

15

13

1 1

9

7

5

3

address

14A

148

14A -14F
99
9A
98
9C

default

FF

Chapter 7 Interfacing

Table 7.2

function

number of character in end of line
sequence 1 = carriage return only 2 =
carriage return followed by line feed
auto EOL when buffer full FF = no EOL
when buffer full 00 = EOL when buffer
full
EOL sequence
line printer Comma field'. width
last comma field'. width
line printer field width
current print position

that you plan connect to your Dragon, to but most of the ideas can be seen by
using a few LEDs. If you connect eight LEDs as shown in Fig 7 .3 then a high
PIA line will show as a dim LED and a low PIA line will show as a bright LED.
To flash LED O try -

l 0 TIMER = 0
2 0 POKE &HFF02,&01
30 IF TIMER< 50 THEN GOTO 30
40 POKE &HFF02,&H00
50 TIMER = 0
6 0 I F TIMER< 5 0 THEN GOTO 60
70 GOTO 20

You can have a lot of fun and learn about interfacing an PIAs with just eight
LEDs!

The problem of finding some PIA lines to act as inputs for a user port is
more difficult. The only lines that are free are PB0 and CA 1 on PIA 1 and these
are available for use from the printer port.

The joystick interface - an A to D convertor

The Dragon's joystick interface is essentially a six-bit four-channel analog
to digital {A to DJ convertor. Although the name 'A to D convertor' sounds
impressive it is surprisingly easy to understand. A functional diagram of the A
to D convertor can be seen in Fig 7.4. You can see that a major component is

101

The Anatomy of the Dragon

Pin 2 or 4
------- + 5 volts pin 2 or 4

330 ohms

LED

PBO - PB7
pins 3,5,7 ,9, 1 1 , 1 3 , 1 5, 1 7

Fig 7.3 LED for printer port (eight needed)

102

Chapter 7 Interfacing

the D to A converter described in Chapter 5. What happens is that when a
voltage is applied to the input, the Dragon produces a trial voltage using the D
to A converter to be compared with it. The output of the comparator is
applied to PB7 of PIA O and this allows the Dragon to discover if the trial
voltage is higher or lower than the applied voltage. Using this information the
trial voltage is adjusted until it is as close to the applied voltage as possible.
The binary number that was used to make the D to A give out this voltage is
taken as the result of the conversion. This method of using a D to A converter
to measure input voltages is known as 'successive approximation' and it is a
very economical way of providing an A to D.

6 bit
D to A

voltage to be measured

voltage from
D to A

Fig 7.4 Block diagram of A to D converter

The only extra piece of hardware used by the A to D is the channel selector
which selects one of the four input channels. This is in fact the same chip that
selects the sound source to be sent to the TV so the methods that were used

103

The Anatomy of the Dragon

in Chapter 5 to select the sound source could be used to select the input
channel. The complete diagram of the A to D can be seen in Fig 7 .5.

1 k

PIA0
PA7

+ 5v

from D to A

PIA0
CA2 CB2

A B

x3

x2

x1

xO

Pin

2

left

2
right

Fig 7.5 A to D Converter: The Joystick Interface
Although it would be possible to program the A to D directly there

seems to be little point, as the JOYSTK function in Dragon BASIC will
automatically carry out an A to D conversion for us. Where there is room
for experimentation is in the connection of something other than joysticks
to the joystick interface! If you have followed the discussion of how the
joystick interface works you will have realised that the A to D converter
can be used to measure a voltage between O and 5 volts. Thus any
electronic device that gives an output in this range can be connected to
the joystick inputs. What makes this task even easier is that a limited 5
volt supply and an earth connection are provided on the joystick
connector

1 04

Chapter 7 Interfacing

pin function
1 channel 0
2 channel 1
3 0 volts
4 fire button
5 5 volts

The circuit of a light sensor can be seen in Fig7 .6. This will return a number
proportional to the light falling on the sensor and can be read using
JOYSTK(0). You can connect temperature sensors, pressure sensors etc in
roughly the same way. The only problem is making sure that the output of the
sensor varies sufficiently between 0 and 5 volts. If this is not the case then you
have no alternative but to use an amplifier. One final note of caution - DO NOT
CONNECT THE JOYSTICK INPUT TO A VOLTAGE HIGHER THAN 5 OR
LOWER THAN O VOLTS. The result of ignoring this warning is a funny
burning smell coming from somewhere near the input selector! However, this
should never happen if you use nothing but the 5 volt supply from the joystick
interface itself.

Finally the two fire buttons, one on each joystick input, are simply connec­
ted to PAO and PA 1 inputs on PIA 0. This means that they act like additional
keys on the keyboard. Moreover, pressing any key in the first two columns of
the keyboard (see the previous section) has the same effect as pressing the
fire buttons.

The cassette interface

There is not much that can be usefully done to alter the operation of the
cassette interface from BASIC so the information included here is more for
completeness than anything else. The output to the cassette recorder comes
from the Dragon's sound generator which is us8d to produce good approxi­
mations totwoaudiotones-1200Hz and2400Hz. The inputfromthe cassette
recorder is first amplified and changed into a square wave before being
applied directly to PAO of PIA 1. The coding and decoding of the cassette
signal is carried out entirely by software in the ROM. The final part of the
cassette interface is the motor control circuit. This takes the form of a small
transistor-driven relay connected to CA2 of PIA 1. There is no point in going
into details of how to control this directly as the BASIC command MOTOR
ON/OFF is very easy to use.

105

The Anatomy of the Dragon

The BASIC timer

.---- -----,,

OAP12
Light dependent

resistor

Fig 7.6 A light sensor

Dragon BASIC includes a timing function in the form of a very odd built-in
variable called TIMER. If you print TIMER then it behaves like a function that
returns the time in 1 /50ths of a second. However, you can set the time by
assigning values to it, for example, TIMER = 0, and this is more like a variable
than a function. No matter how TIMER is used it is a very useful facility. The
way that it works is also interesting. You might be puzzled how the Dragon
manages to keep time when there has been no mention of a timer chip among
its hardware. The answer is that the Dragon doesn't have a timer chip but
uses the frame sync pulse from the video generator to provide a 1150th of a
second tick for a software clock.

1 06

Chapter 7 Interfacing

The software clock uses the idea of an interrupt described earlier in this
chapter to stop what the Dragon is doing and add one to a counter every time
a frame sync pulse is detected on PIA O's CBl input line. You can disable
interrupts from CB1 just by setting bO in the control register to 0. First try -

l 0 TIMER = 0
2 0 PRINT TIMER
30 GOTO 20

and you will see the timer increment as usual. If you now add lines 5 and 6 -
5 D = PEEKl&HFF03) AND &HFE
6 POKE &HFF03,D

and re-run the program you will now find that the timer is stuck at zero! You
will also find that the PLAY command has lost it's sense of time. If you try
PLAY "C"' it will go on forever proving that PLAY uses the timer to set the
length of its notes.

This is very interesting but hardly useful. However, the fact that once every
fiftieth of a second the Dragon stops what it is doing and executes some timer
software can be used to our advantage in some quite surprising ways. For
example, in the section examining the keyboard, it was explained that an
auto-repeat facility could be produced by setting every location in the rollover
table to &HFF - once for each repeat. This can be done from a BASIC
program in the way shown but what about while a program is being entered or
edited. One solution is to add a short program onto the front of the timer
software that will clear the rollover table once every 1110th of a second. This
would run whenever the timer was running and would give the keyboard a full
auto-repeat facility! The only problem is that this software would have to be
written in machine code. The only other inforr:nation needed to write this
program is that on receiving an interrupt the Dragon jumps to the machine
code whose address is stored in memory location 100 and 10E.

The expansion port

The large connector on the righthand side of the Dragon that is normally
used to plug in program cartridges is in fact capable of much more than this.
As well as bringing out the control lines that are necessary to add extra
memory in the form of ROM it also provides nearly every address, data and
control line that is important inside the Dragon. Thus rather than just being a

1 07

The Anatomy of the Dragon

cartridge connector it is better thought of as an expansion connector through
which almost any piece of extra computer hardware can be connected to the
Dragon. For example, the Dragon disk system is connected via the expansion
connector.

Connecting anything to the Dragon using the expansion connector is a job
for an electronics expert only, so although the pin connections and their
functions are presented below, no detailed explanation is given.

Pin No.
1
2
3

4
5
6
7
8

9
10-1 7

18
19-31

32
33-34

35
36

37-39
40

Name
+12V
+12V
HALT

NMI
RESET

E
Q

CART

+ 5V
D0-D7
R/W

A0-A12
R2

GND
SND
P2

A13-A15
EXTMEM

Table 7.3
Description
+ 12volts
+ 12 volts
Stops 6809 and places data and address
busses into 'tri-state' mode so that and
external processor may take control
Non-Maskable Interrupt to the CPU
Reset and power on reset signal
E clock
Q clock
Interrupt input to PIA 1 CB 1 Used to detect
presence of Cartridge
+ 5 volts
Data bus
Read/Write
Address bus from AO to A 12
Cartridge select signal COOO to FFEF
Ground
External sound input
Spare select signal FF40 to FF5F
Address bus from A 13 to A 15
Disables internal device selection

The only other point worth mentioning is that the Dragon's expansion
interface is identical to the Tandy Color Computer's cartridge slot except for
PIN 1 which on the Tandy machine carries -12 volts. This should be kept in
mind if you intend trying to use accessories intended for the Tandy machine
on the Dragon.

1 08

Chapter 7 Interfacing

Software v Hardware - Using the Dragon as a VDU

One of the most interesting things about the Dragon is that it tends to use
software to achieve things that other machines would use hardware for. For
example, the Dragon's cassette interface, sound interface, D to A, A to D etc
are all created using PIAs, the minimum of extra hardware and some clever
software. In many ways this approach sums up the modern approach to
electronics - if you can write it as a program then do so! As an example,
consider the problem of making the Dragon into a VDU so that it can
communicate with another computer or make use of Prestel. There are two
apparent deficiencies in the Dragon's hardware to overcome before this is
possible. First, the Dragon lacks a serial interface of any kind and most
computers communicate using a serial rather than a parallel interface.
Second, the Dragon lacks a text display with upper and lower case and the 32
column screen is a little restrictive. The hardware solution to these to
problems is very possible but fairly expensive. The lack of a serial interface
could be solved by designing an add-on to the expansion connector. (It would
essentially be an 6850 ACIA chip and a few decoders and line drivers.) The
lower case problem could be solved by a modification inside the Dragon
which consisted of an additional character generator ROM for the video
generator to use. To overcome the problem of the narrow 32 column screen
would require an almost complete re-design of the Dragon or, once again, an
additional circuit plugged into the expansion connector. (This would have to
be a generator with its own memory etc.) Even after all this hardware was
built and tested you would still have to write quite a lot of Dragon software to
use it!

The alternative approach is to continue the Dragon's philosophy of using
software and PIAs. The serial interface could be implemented using PIA 1 to
provide one output line PA 1 and one input line PB0 or CA 1 from the printer
port. As a serial signal is just a series of pulses (see Fig 7 .7) with a regular
format it can be produced by setting the output line high and low at the
correct times. For input the problem is slightly more difficult but really comes
down to sampling the input at regular intervals following the start bit to
discover if the line is high or low. The only hardware required for this software
serial interface would be a single chip to change the O to 5 volt output that the
PIA produces to the -12 and + 12 volts that is the standard for serial
communication.

The lower case character problem could be solved by the use of the
machine code equivalent of draw strings in a PMODE 4 to define a new

1 09

The Anatomy of the Dragon

+ 1 2v 1- t �
t = time for one bit

JJ-1-r-T-r-r- r-1- I I I
I I I I I I I
I I I I I I I I 2 stop bO I bl I b2 I b3 I b4 I b5 : b6 I b7 I bits
I I I I I I : I
I l I I I I I I

1 2v _ _ l _ _ , _ _ L _LLj _ _ Ll
I I start bit 8 data bits

each one is
either high (1)

or low (0)

Fig 7.7 Serial data format

1 10

Chapter 7 Interfacing

character set. The narrow screen could even be improved upon by using
character shapes only 6 dots wide giving around 50 characters to a line.
However this would reduce the quality of the display in favour of quantity.

The main point to notice is that while the first approach involved a great
deal of hardware development together with a great deal of software
development, the second approach is almost entirely software and as a result
it is cheap to reproduce once you have finished and tested your programs!
The only snag is that most of the software would have to be written in
assembler to achieve the necessary speed. But as you now know enough
about the Dragon to know what the programs would have to do, half the
battle is already won.

11 1

Chapter Eight

Inside BASIC

I n normal use there i s generally n o need t o worry how Dragon
BASIC works, it is enough that it does! However, what we have learned
about the way the Dragon works makes it worth examining some of the
internal organisation of BASIC. If you know how data is stored in memory
then you have the opportunity of changing it directly, as in the example of
user-defined characters and PUT in Chapter 6. If you know how a BASIC
program is stored and processed then you have the opportunity to alter the
way that BASIC works and add new commands. Finally, an understanding of
the internal operation and organisation of BASIC can suggest ways of saving
memory or time.

BASIC's use of memory

BASIC divides the available RAM into six regions as shown in Fig 8 .1. The
actual location and size of each of these regions changes according to the
program being edited or run. The addresses of the divisions named in Fig 8.1
can be found by examining the appropriate pair of memory locations in low
memory.

name

START
VAR

ARRAY
END

STACK
S.TOP
HIMEM

address pair

&H19,&H1A
&H1B,&H1C
&H1D,&H1E
&H1F,&H20
&H21,&H22
&H23,&H24
&H27,&H28

112

User progs

String area

BASIC STACK
grows downwards

- .l. _J. _ _ , _ _

Free Memory

Arrays

Variables

Program
Text

Graphics
Pages

System Use

Chapter 8 Inside BASIC

HIMEM
STOP

STACK

END

ARRAY

VAR

START

Fig 8.1 BASIC's use of memory

113

The Anatomy of the Dragon

To find out the address stored in any of these pairs of memory locations use -
DEF FNNIAI = PEEKIA)*256 + PEEK I A + 1 I

where A is the address of the first of the two memory locations.

The area of memory called 'program text' is where the lines of a BASIC
program are stored, both as you type them in and while the program is
running. START marks the beginning of this area and this moves up and
down depending on the number of graphics pages reserved using PCLEAR.
The next area is used to store the simple variables, real numbers and strings,
that are created while the program is running. The start of this area is
immediately after the end of the program text and is marked by VAR.
Obviously the larger the text of a BASIC program is, the less memory there is
for variable storage. Similarly ARRAY marks the start of the area of memory
used to store any arrays that are created while the program is running. Notice
that as the array area immediately follows the simple variable area, creating
new variables after you have declared any arrays means that they all have to
be moved up to accomodate the new variable. To see this, first try -

10 TIMER = 0
2 0 A = 0
3 0 B = 0
40 C = 0
50 D = 0
6 0 E = 0
7 0 PRINT TIMER

which will print the approximate time it takes BASIC to create and zero five
new variables. The result should tell you that it takes less than a fiftieth of a
second for five variables. If you add -

5 DIM X(4500)
and re-run the program you will discover that the time to create and zero five
variables shoots up to around 130/50 ths of a second, or approaching three
seconds! Admittedly, it is unusual to use such a large array or create very
many simple variables in a program but the time it takes to move arrays
around should be kept in mind if you are trying to make your programs run as
fast as possible. The solution is to initialise any variables that you are going to
use in your program before you dimension any arrays.

The highest memory location used by BASIC for text, variable or array
storage is marked by END. The difference between END and START will tell

114

Chapter 8 Inside BASIC

you how much memory your program is using for storage. To include the
variables and arrays that your program creates in the result of this calculation
all you have to do is run the program and then print the difference between
END and START in direct mode after the program has finished. The reason
that this works is that all the variables and arrays that a program created while
it was running are preserved until you type NEW or add or edit a line of the
program.

The highest location used by BASIC is marked by HIMEM. This can be
made less than the actual physical top of memory to provide space for
machine code programs and other non-BASIC uses. Just below HIMEM is
the start of the string temporary storage area. When a string is defined as part
of the program, e.g. A$ = 'THIS IS A STRING·, the characters that make up
the text of the string are not copied to another part of the memory. Instead a
string variable is set up in the variables area of memory which consists of a
'pointer' to the characters of the string that are stored in the program text. In
this way there is no need to make a second copy of the text and so use up extra
memory. However, some strings are not defined as part of the program text,
they are created while the program runs. For example C$ = .. "" .. + A$ is a string
that doesn't occur in the program text. To cater for such strings the
characters that correspond to its text are stored in the temporary string area.
As the temporary string area is used up, the first free location is marked by
S. TOP. It is possible for this area of memory to become completely full and
S.TOP will try to use an area of memory set aside for the BASIC stack and an
0. S. (out of storage) error will be reported. You can reserve as much memory
as you need for temporary string storage using the CLEAR statement which
moves the BASIC stack down in memory, (i.e. it moves STACK lower).
Dragon BASIC is quite clever about the use of this string storage area. If a
string is assigned a new value the old value is left in the storage area and so
takes up space even though it is no longer needed. When the storage is used
up the Dragon will re-organsise the temporary string area and throw away
any string values that are redundant, so freeing the space that they occupied.
This process is called 'garbage collection' and is the reason why the Dragon
sometimes seems to pause during extensive string handling.

The final area of memory, the BASIC stack is used for the temporary
storage of information such as the line number to return to following a
GOSUB.

115

The Anatomy of the Dragon

Dragon data formats

Dragon BASIC is fairly limited in the number of types of data that it can
handle. Most versions of Microsoft BASIC (which is what Dragon BASIC is)
can support integers, real numbers, double precision numbers and strings.
However, the Dragon can only handle real numbers and strings. Not only is it
limited to these two types of data, it only provides arrays with a maximum of
two dimensions. For most purposes these simple data types are quite
sufficient.

As already described, simple variables, real numbers and strings are stored
in the region of memory beginning at VAR. Both real numbers and strings
take seven memory locations to store. The format of a real number is -

m m + l m + 2
first second exponent

letter letter

m + 3 m + 4 m + 5 m + 6
four byte mantissa

Notice that only the first two letters of the variable's name are stored. The
format for a string variable is -

first second number
letter letter of charts

address of text

A string is distinguished from a real number because the second letter of the
name has 128 added to its ASCII code. In other words you can find out if a
variable is a number or a string by testing the value of the second letter. The
address of the text is a pointer to the characters that make up the string. As
already described in the last section these characters are either stored in the
text of the BASIC program or in the temporary string area.

The format for an array is the same irrespective of whether or not it is a
numeric or a string array. Every array is made up of two parts, a header and
the data values. The header describes the type and format of the array and the
data values are simply a collection of five byte values in the same format as the
last five bytes of the simple variables storage format. The header format is -

first second array length number 0
letter letter of dims

1 1 6

max of first dim

Chapters Inside BASIC

Once again, only the first two letters of the name are stored and string arrays
are distinguished from numeric arrays by having 128 added to the ASCII code
of the second letter. The array length is the total amount of storage allocated
to the array including the header and the data values. Thus, if m is the address
of the first byte of the header, m + length is the address of the first byte of the
NEXT array. The number of dimensions is simply 1 or 2. If the array is
one-dimensional, the next two bytes record the maximum value for the array
index. If the array is two-dimensional, the next two bytes record the
maximum value for first array index and there are two additional bytes used to
record the array index for the second array index. Thus the header for a
two-dimensional array is two bytes longer than for a one-dimensional array.

Using this information you can manipulate data stored in variables and
arrays directly. In particular, you can PEEK variable locations to find out what
is stored in them. It is usually not necessary to search though the variables or
array area of memory for a particular variable because BASIC provides the
VARPTR function that will return the address of any variable, even an array
element. One use of the data formats is to write a variables and array dump
program. For example the following subroutine will print out the names of all
the variables that a program has used -

1000 V=256*PEEKl&H11 B I + PEEKl&H1 Cl
1010 AR =256*PEEKl&H1 DI + PEEKl&Hl El
1020 PRINT HEX$(V);":";
1030 PRINT CHR$(PEEKIVII;
1040 IF PEEKIV+ 1)> 127 THEN PRINT CHR$(PEEK(V+ 1 l-128I;··s··;
ELSE PRINT CHR$(PEEK(V+ 11);" ";
1050 PRINT" ";
1060 FOR 1 = 1 TO 5
1070 PRINT HEX$IPEEK(V + 1 + I));'
1080 NEXT I
1090 V = V + 7
1100 PRINT 1110 A R =256*PEEKl&H1 DI + PEEKl&H1 C l
1120 I F V> = AR THEN STOP
1130 GOTO 1020

This program can be extended quite easily to print out the details of arrays as
well as simple variables but this is left for you to work out for yourself.

117

The Anatomy of the Dragon

The format of BASIC lines

BASIC programs are stored in memory in a compressed format that allows
the Dragon's interpreter to carry out your program faster than if it was stored
exactly as you had typed it. This compression takes the form of replacing
keywords and functions by a single byte code called a 'token'. Apart from this
each line is stored exactly as typed.

The format of a line of BASIC is .

link to next line line number token rest of text 0

The first two bytes of each line contain the address of the start of the next line.
This allows the BASIC interpreter to search through the memory to find any
given line without having to read the whole of each line. The next two bytes
contain the line number and the fifth byte contains the token that replaces the
keyword. After this the rest of the text of the line is stored in as many bytes as
required. Notice that although most of this text is just an ASCII
representation of what you typed, any functions within the line are also
replaced by tokens. The end of the line is marked by a 0 byte. The final line of a
program is marked by a link value of 00.

Recovering programs
One of the many uses of knowing the format of a BASIC program and the

layout of the Dragon's memory is the recovery of programs that have been
accidently deleted by typing NEW. In an ideal world this sort of accident
should never happen but if you ever do lose a few hours valuable work in this
way then you might feel it worth trying the following procedure.

When a program is deleted by NEW all that happens is that the link bytes of
the first line of the program are set to zero and the pointers that divide the
memory into the various regions are reset. To recover a program what you
have to do is restore the link bytes to point to the next line and set the pointers
to the correct division of memory for the program. To do this you have to scan
through what used to be the program storage area until you find the 0 byte
marking the end of the first line. This then gives you the address of the first
byte of the second line of the program which can be POK Ed into the link bytes
of the first line of the program. Scanning though memory can take some time

1 1 8

Chapter 8 Inside BASIC

if the first line of your program was at all long. Start at the memory location
given by PEEK(&H19)*256 + PEEK(&H1 A) and enter all commands in direct
mode i.e. do not use line numbers and RUN a new program because this will
overwrite the program you are trying to recover. Once you find a memory
location containing zero and have POKEd the address into the two link bytes·
of the first line you will find that you can list the program. However, do not try
to run it nor add any lines because, although you can list it, the VAR pointer is
still set to the wrong place. Your next task is to locate the address of the end of
the program. To do this you need a short program typed in direct mode, but
first you will have to raise the area where variables are stored away from the
program area. First set the the VAR pointer to something very large and well
outside the old program area and then type the following single line program
in direct mode.

FOR I= start TO &H7 FFF:PRINT 1 : 1 = PEEK(l)*256 + PEEKII + 1 1
-1 :NEXT I

where 'start' is the start address of the text area. The one line program will
print out the value stored in the link byte of each line. When you find a link
byte that is zero the address of the last line of the program will be the number
printed just before the zero. Use this address to find the end of the line and
then adjust the values of VAR, ARRAY and END to point to just beyond the
end of this line.

Although certainly worthwhile if ever you do lose a long program by
mistake, this procedure is long and difficult. There are many things that can
go wrong with it and my advice is to save programs often and hope that you
never have to use it!

The TAB function

If you examine the BASIC ROM in any detail you will quickly find an area of
memory that stores the BASIC keywords and functions. If you look carefully
you will notice that there is a keyword that isn't mentioned in the Dragon
manual - TAB. If you try ,

10 FOR l =0 TO 15
20 PRINT TABlll;"X-
30 NEXT I

you will find that the Dragon does indeed have a TAB function that moves the
cursor from its current printing position to column I.

1 19

The Anatomy of the Dragon

Adding commands to BASIC

It is possible to add new commands to BASIC and so to a certain extent
produce customised versions of Dragon BASIC. However, this is a procedure
that can only be undertaken in assembler and so this next section will not be of
use to the BASIC only programmer.

The way that new commands can be added to BASIC involves intercepting
the 'get next character' routine used by the BASIC interpreter to process a
program while it is running. This routine is a machine code program that is
loaded into low memory when the Dragon is first switched on. It is a
self-modifying program so what it does can be a little tricky to work out.

Address

9F
Al
A3
AS

AS

assembly language

GETCHAR INC A7
BNE SKIP
INC A6

SKIP LOA 0000
JMP B826

The first part of the program adds one to the address stored in memory
locations A7 and A6. If you look carefully you will see that these two locations
are in fact within the program and form the address field following the LOA
instruction. The effect of this is to load the A register from one location
further on each time the routine is used. Thus the BASIC interpreter can set
location A7 and A6 to the first character of the BASIC program and use the
routine whenever it needs the next character.

To add a new command all you have to do is change the JMP 8B26
instruction to point to the assembly language routine that implements your
new command. The first part of this routine would check the current
character in the A register to see if it could be the first letter of the new
command. If it is then the next character would be checked for a match and if
they did the assembly language routine would carry out the command. If they
didn't match then the character would be passed on to the interpreter by
executing a JMP BB26 instruction.

This method isn't the only way of adding commands, you could intercept
the error handler for example, but it is one of the easiest. Whatever method is
used there is no way that assembly language can be avoided.

120

Chapter 8 Inside BASIC

Some useful memory locations

There are a number of memory locations that BASIC uses either to store
temporary data or the addresses of routines that it uses while running a
program. Some useful data locations are given in table 8.1 -

address
!hex)

2 D,2E
2F,30

31,32
33,34
68,69
6 F
71
78
87
88,89
9D,9E
82
83
84
86
87,88
89
8A,BB
BD,BE
BF.CO
1 12-113

Table 8.1

function

Address of current BASIC line
Address of start of BASIC text used for warm restart
following reset
DATA line number
DATA memory pointer
Current line number
Current device O = VDU,-1 = cassette,-2 = printer
Restart flag if &H55 then warm start
Cassette status O = closed, 1 = input,2 = output
Last key pressed (may be cleared by break check)
next location for screen output
Address used by EXEC
Current foreground colour code
Current background colour code

Colour in use
Graphics mode
Address of top of graphics screen
Number of bytes in a graphics row
Base address of current graphics screen
Current x co-or dinate
Current y co-or dinate
Timer

Many of BASIC's useful routines call dummy subroutines in lowmemory.
These subroutines consist of RT$ instructions so that normally they have no
effect. However, as each has three bytes allocated to it you can change the
RTS instruction to a JMP to a user routine and so modify the the way that
BASIC works. Some useful examples of these dummy subroutines are given
in table 8.2

121

The Anatomy of the Dragon

address
(hex)

167
16A

18E
194
19A

Table 8.2
called from

Input a character
Output a character
Error handler
RUN

Read next state ment, (after returning a check for
break is carried out, so increasing the return address by
4 will disable break)

On from BASIC

To release the real power of the Dragon's hardware there is nothing better
than assembly language. However, for ease of use there is nothing better
than BASIC. Considered overall, Dragon BASIC is not a bad implementation
of BASIC and it is probably better to proceed by writing as much of a program
in BASIC as possible. To tackle the tasks that need assembler the USR or
EXEC commands (introduced in the next chapter) can be used to good effect
to call assembler routines. There is a lot to be said for the point of view that it is
better to spend time adding new commands to Dragon BASIC rather than
just writing one-off routines. If you write an assembly language routine only
other assembly language programmers can use it, but if you add it to BASIC
as a new command, anyone can use it.

122

Chapter Nine

I ntroduction to 6809 Assembler and
Machine Code

The Dragon is a remarkable machine and especially so when you take into
account its competitive price. However there are applications that Dragon
BASIC just isn't up to. This isn't a problem that is specific to the Dragon, it is
inherent in the way that BASIC is implemented on small computers. The main
complaint against Dragon BASIC is that it is too slow. There are many
occasions when this lack of speed is tolerable. If a number crunching program
is too slow then you can always go and have a cup of coffee while you wait!
The problem only becomes serious when the waiting time grows to days or
when you need an almost instantaneous response. For example, it is possible
but very difficult to write a space invader style program in BASIC but, even if
you try very hard, you will still find it difficult to make anything move quickly
and smoothly on the screen using BASIC. There is also a second problem
with BASIC that has often become apparent in earlier chapters. If you want to
alter the way BASIC works or add to it then you cannot use BASIC. No matter
what you are interested in, sooner or later you will run up against the
limitations of BASIC.

You may think that these limitations are something to do with the fact that
the Dragon is just a home computer. You would be wrong. The reason is that
All micro computers, perhaps All computers whatever their size,
eventually prove too slow for some task that they are given! Before deciding
that the Dragon is too slow for the range of applications you want it to
undertake it is only fair to give it a chance to show what it can really do. The
Dragon has hidden power and is capable of running your programs much
faster than you would expect. The cost of this speed increase is, however,
quite high in that you have to abandon BASIC and learn 6809 machine code.
Despite any arguments to convince you otherwise, machine code IS more

123

The Anatomy of the Dragon

difficult than BASIC (why else would anyone use BASIC!) and it takes a
certain amount of dedication to come to terms with it. Now this may sound
like advice to avoid machine code like the plague but in fact the rest of this
chapter should encourage you to learn machine code for yourself. The point
is that machine code isn't something that you can pick up in an afternoon but
it is a rewarding thing to learn.

Slow BASIC.
BASIC is one of the many 'high level' languages that you can use to

program a computer. Any given computer can often be programmed in a
range of such languages e.g. BASIC, FORTRAN, ALGOL etc. For example,
the you can buy a variety of program packages for the Dragon that give you
the Forth programming language. The way that one computer can run so
many different languages is that each one is translated to a more fundamental
language before the program is run. This more fundamental language is
usually called machine code and it is the only language that a computer can
obey directly. Each different machine has its own machine code language
and each machine translates the high level languages available for it into its
own personal code. This means that you cannot learn machine code in
general but only a specific computer's machine code. The Dragon has a 6809
microprocessor inside it so the machine code that it uses is 6809 machine
code. This is a very good choice for a first machine code to learn because the
6809 is very well designed and logical but you should be aware that many
other well-known computers such as the Sinclair Spectrum, the BBC Micro,
APPLE and PET do not use a 6809. Indeed the Dragon is one of the first home
computers to use it.

As already explained, your Dragon has to convert your BASIC statements
to machine code before they can be carried out. In fact the process is rather
more subtle than a direct translation to machine code. There are machines
that translate a whole BASIC program to machine code before carrying it out
by the use of a program called a 'compiler'. However these machines are in
general more difficult to use than the Dragon which uses a different
technique. What happens inside the Dragon when you run a program is that
each line of BASIC is examined at the moment that it is to be carried out. The
keyword is then used to 'look up' what is to be done in a list of actions. For
example, if the line of BASIC was GOTO 10 then the Dragon determines that
the keyword is GOTO and uses this to look up what to do in a table. The entry
in the table for GOTO would contain the machine code equivalent of:

1 24

Chapter 9 Introduction to 6809 Assembler and Machine Code

"obtain the number following the GOTO, find the line of BASIC with the
same line number and make this the next instruction to be obeyed".

This method of running a BASIC program is known as 'interpreting' and the
program that carries it out is called an 'interpreter'. Thus the Dragon
interprets every line of BASIC that you write and this is why BASIC is so slow.
Before the action that your BASIC command specifies can happen, the
Dragon has to spend a lot of time working out what your line of BASIC
actually means! By contrast, a machine code program is executed
immediately without any interpreter and can therefore often run over ten
times faster.

The characteristics of machine code

If machine code is so much faster than BASIC why don't we use it more
often. The answer to this question has already been briefly mentioned in the
introduction to this chapter - it is more difficult to program in machine code
than in BASIC. The reason why machine code is more difficult than BASIC is
that it is a much simpler language! In BASIC you might write something like
A= B + C/2-Zand rightly expect the answer to be stored in A, but in machine
code the only arithmetic operations that you can use are addition, subtraction
and multiplication and these can only be carried out one at a time and on
numbers small enough to be stored in one, or at most two, memory locations!
To do 'difficult' things like division you have to write subroutines that will split
them down into simpler operations. For example, to divide one number by
another you have to resort to a form of repeated subtraction.

It is not within the scope of this book to teach you machine code but the
rest of this chapter will attempt to give you the 'flavour' of machine code
programming and an introduction to some of the fundamental ideas involved.
The best way to achieve this is via a couple of simple examples. First it is
necessary to examine some of the details of the 6809 microprocessor used in
the Dragon.

The 6809

The 6809 microprocessor is one of the fastest and most powerful available
today but it is still only capable of very simple operations. It can access any of
the memory locations that we have discussed in earlier chapters but it has few

125

The Anatomy of the Dragon

instructions which alter them directly. Any operations have to be carried out
in special memory locations inside the microprocessor itself. These special
memory locations are called 'registers' and because there are so few of them
they are referred to by names rather than addresses. The 6809 has a number
of registers but for the sake of simplicity we will examine and use only three -

the A register
the B register
and the X register

The A and B registers are almost identical in the range of things that you can
use them for. They are involved in nearly all the arithmetic operations that the
6809 can perform. They are exactly like an ordinary memory location in that
they can only hold numbers between 0 and 255. The X register is capable of
fewer operations than the A and B registers but it is twice as large as either of
them. It can hold the equivalent of two ordinary memory locations and so the
range of numbers that it can handle is considerably increased. In fact the
range is large enough to hold the address of any memory location in the
Dragon; and this is the main use of the X register - as an address register.
Many 6809 operations employ the number stored in the X register as the
address of the memory location that will be used.

All this talk of registers and what they are used for is easier to understand
after one or two examples of 6809 instructions.

The LOA A and ADD A instructions

Machine code is recognised by the 6809 in terms of numbers. That is, a
machine code program is nothing more than a long list of numbers stored in
the computer's memory. (After all what else but a number can you store in a
computer's memory!) The trouble is that humans are very poor at reading
through and understanding long lists of numbers. So to make machine code
easier to use we use convenient symbols instead of the numbers that the
computer recognises to represent operations. For example, if you want to
load the A register from memory location &H12 you would use a version of
the LOA A instruction -

LOA A &H12

126

Chapter 9 Introduction to 6809 Assembler and Machine Code

which you can read as "Load the A register from memory location &H12".
However, a 6809 cannot read this type of code so the instruction has to be
coded into numbers. If you look up LOA A in a list of 6809 instructions you will
find that its code is &HB6. This is referred to as the 'operation code' or 'op
code' for LOA A from a memory location. The complete coded instruction
also requires the address of the memory location to be loaded into A to be
written after the op code. So the complete coded instruction is
&HB6,&HOO,&H12. If you're wondering why there isan additional zero byte
code in front of the instruction the reason is that two memory locations are
used to store the address. In other words the address is &H0012 which is
stored as &HOO in one location and &H12 in the second. Thus a single, very
simple, 6809 instruction takes three memory locations to store. Other 6809
instructions may take less memory, others take more.

As another example, of a 6809 machine code instruction consider the
ADD A lfn

instruction where n is a number in the rangeO to 255. This simply adds n to the
contents of the A register. That is, if A was already loaded with 3 then after
ADD A #5 it would contain 8. The # is used to distinguish between a
number and an address so ADD A 5 would mean add the contents of memory
location 5 to the A register. This instruction has an op code of &H8B and the
number to be added n is stored in the next memory location. Notice that as n is
restricted to the rangeO to255 only one memory location is required. Thus the
complete ·coding for ADD A lf5 is &H8B,&H05 and this only uses two
memory locations.

The usual way of writing a machine code program is to use the symbols
such as LOA A and ADD A, to write the entire program and then go through
and convert it to a list of numbers. The conversion of the symbols to numbers
is such a routine job that you can get a prog

.
ram to do it for you. Such a

program is known as an 'assembler ' and it certainly makes machine code
programming easier. Unfortunately the Dragon doesn't have an assembler as
a standard extra although there are some available for it on the market.

A short example program

There is no suggestion that after the last two sections you'll know enough
about machine code to be able to write a program but you should be able to
understand the outline of one. There is a machine code subroutine in the

127

The Anatomy of the Dragon

BASIC ROM that starts at memory location &HSOOC that will print the
character whose ASCII code is stored in the A register at the current position
on the screen. We can use this knowledge to write a very simple program that
will fill the screen with any character of our choice.

START LOA A jl&H41
JSR &H800C
JMP START

The first instruction in this program loads the A register with &H41, the ASCII
code for 'A'. The second instruction is like a machine code equivalent of
GOSUB in that it transfers control to a machine code subroutine starting at
&H800C. (JSR stands for Jump to SubRoutine.) As we already know, the
subroutine at &HSOOC prints the character whose code is stored in the A
register. You should be able to see thatthe result of this JSR isa 'A' printed on
the screen. The final instruction is a machine code equivalent of GOTO in that
it transfers control to the 'START' of the program. (JMP is short for JuMP so
you can read the last instruction as 'jump to START'.) The workings of this
program are not difficult to understand - it will simply print 'A' on the screen
until it is full and then it will continue with the screen scrolling after each line of
As until the reset button is pressed. Normally we have to worry about
stopping machine code subroutines after they have finished what they are
doing but in this case, for simplicity, the reset button will do the job.

We now have a fully specified machine code program. The only things that
remain to be done are coding and testing. Coding, if you recall, is simply
changing the symbols that humans use to write machine code into the
number codes that computers understand. The first two lines of the program
can be coded easily -

Instruction
START LOA A jl&H41

JSR &H800C

Code
&H86, &H41
&HBO,&H80 , &HOC

The code for LOA A with a number is &H86 and the number to be loaded
follows the op code i.e. &H41 . The op code for JSR is &HBO and the address
of the subroutine follows in the next two memory locations. The last
instruction presents a problem however. The op code for J MP is &H7 E and
the address that it transfers control to is stored in the next two memory
locations - the trouble is we don't know the address of the start of the
program!

128

Chapter 9 Introduction to 6809 Assembler and Machine Code

To know the address of the start of the program we have to decide where it
is going to be stored in memory. There are a number of places that machine
code can be stored in the Dragon and each has advantages and
disadvantages. The simplest solution is to reserve some memory using the
CLEAR command-

CLEAR s,h
will reserve s bytes for string storage and reserve memory from address h + 1
up for machine code. (That is, the highest address that BASIC will use is h.)
Once we have reserved some memory we still have the problem of getting the
machine code into it, after all unlike BASIC machine code cannot be entered
directly into memory from the keyboard. One of the simplest methods of
transferring a list of numbers to any memory locations is to use a DATA
statement to hold the numbers and use a POKE instruction to transfer them
one by one into memory. For example if the list of numbers is stored in DATA
statements before line 50, the following lines of BASIC -

50 FOR I= S TO S + N-1
60 READ D
70 POKE l,D
80 NEXT I

will transfer N numbers into memory starting from the location whose
address is stored in S. So if we reserve memory above &H7000 for machine
code programs (this is around 1000 memory location which is more than
enough for the simple demonstration programs in this chapter! l and store the
program starting at &H7001, then the address corresponding to START is
also &H7001. This means that the full form of the JMP instruction is

JMP &H7001
which can be coded as

&H7E,&H70,&H01
We can now write the final list of numbers that corresponds to the machine
code of the program in a DATA statement and use the READ and POKE
method of storing the list in memory. That is,

10 DATA &H86,&H41,&HBD,&H80,&H0C,&H7E,&H70,&H01
20 CLEAR 1 00,&H7000
30 FOR I= &H7001 TO &H7001 + 8
40 READ D
50 POKE l,D
60 NEXT I

129

The Anatomy of the Dragon

This program will take each of the numbers in the DATA statement and store
them in memory but that is all. We still have to find a way of making the
Dragon obey this list of instructions. There are two different ways of doing
this the USR function and the EXEC command. For our purposes the EXEC
command is simpler and sufficient

EXEC address

will transfer control to the machine code program starting at 'address'. As we
already know the address of the start of the program all we have to do is add

70 EXEC &H700 1

to the program.

When you run this final version of the program you should see the screen fill
very rapidly with letter As. To compare the speed of this machine code with
BASIC add the following lines and then enter GOTO 80

80 PRINT " A";
90 GOTO 80

Although this example, has been very simple, consisting of only three
machine operations, it has taken a long time to produce and a long time to
explain! However, you should be able to judge the advantages of machine
code from the speed difference between this example, and the BASIC
equivalent.

A second example, - reversing the screen

In this example, we will write a machine code subroutine that will change all of
the characters displayed on the screen to their inverse form (i.e. green will be
changed to black and black to green). Although this is a useful subroutine, it
could be used to 'flash' the screen during a game for example, its primary
purpose is to show how a slightly larger machine code program is written.
However, as the program is so much longer there just isn't the space to go
into as much detail as with the first example. All that can be done is to explain
the method used and how each instruction works. The details of coding are
given but not explained.

The method underlying this routine is to change bit 6 of every text screen
memory location to a 0, if it is initially a 1, and toa 1 if it is initially a 0. If you go
back to Chapter 3 you will find that bit 6 controls which way round, black on

130

Chapter 9 Introduction to 6809 Assembler and Machine Code

green or green on black, a character will be displayed and so c the two
numbers were different. For example, the exclusive or of 1011 and 1110 is
0101 i.e. there is a 1 in the answer only where the two numbers are different.
To reverse bit 6 in a number all you have to do is to exclusive or it with &H40.
The reason that this works is that bit 6 in &H40 is 1 and all the other bits are 0
and so if bit 6 in the first number is 1, bit six in the answer will be O and vice
versa, while all the other bits in the first number are left unaltered. To see this,
try working out the exclusive or of 01011101 with &H40 or 01000000 (the
answer is 00011101).

The rest of the method is straightforward. We have to load the X register
with the address of the start of the screen area and then use this to load each
screen memory location into A, exclusive or it with &H40 and store it back
into the same location. The only thing that we have to be careful about is to
avoid 'running off' the end of the screen. The best way to achieve this is to
test the value of X each time one is added to it to move it on to the next screen
location. The only other detail to remember is that all machine code programs
should return to BASIC by using a ATS instruction. (RTS stands for Re Turn
from Subroutine and is similar in function to the BASIC RETURN.)

The complete program along with some explanatory comments is -

LOOP

LOX jl&H400

LOA A O,X

EOR A jl&H40
STA A O,X

LEAX 1,X
CMP X jl&H600

BEQ + 3

JMP LOOP
RTS

Load the X register with the address of
the start of the screen
Load A with the memory contents of
the memory location whose address is
in X
Exclusive OR.of A with 40
Store the A register back in the same
screen location
Add one to the X register
Compare the contents of X with
&H600
Skip the next instruction if X is equal to
&H600
Jump back to reverse next location
Return to BASIC

To try this program out it is necessary to convert it into machine code and
include it in a DATA statement as in the last example,. If you do this you the
following program results -

131

The Anatomy of the Dragon

1 0 CLEAR 100,&H7000
20 DATA &H8 E,&H04,&H00,&HA6,&H84,&H88, &H40,&HA7,
&H84, &H30 ,&H30, &H01 ,&H8 C,&H06,&H00,&H27 ,&H03,&H7E,
&H70,&H04,&H39
30 FOR I- &H7001 TO &H7001 + 1 9
40 READ D
50 POKE I,D

60 NEXT I
70 EXEC &H7001
80 GOTO 70

Although this is a long example, you should be able to understand most of
it if you study it carefully. If you compare the speed of this machine code
routine with the time it takes BASIC to print a screen full of characters you will
see the reason why machine code is worth while.

Next steps

If you have managed to understand some of this chapter and have entered
the examples and seen how much faster they are than BASIC then machine
code will be the next area of computing that you will want to study. When you
are ready to tackle this topic, look out for the companion volume to this book,
"The Language of the Dragon : 6809 Assembler" in which I continue to
explore all the aspects introduced in this chapter with many practical
examples that complete some of the unfinished business of this book.

Whether or not you decide to pursue machine code programming, the
other techniques explained in this book should enable you to get a good deal
more out of BASIC on your Dragon than you might previously have thought
possible. There is usually a BASIC solution to every programming problem
and one lesson to be learned from this book is that it is worth searching for it.
Understanding the anatomy of your Dragon should help you in this quest.

132

Appendix I
6847, 6821 and 6883 Pin Connections

The Video Chip

vss DD7 40

DD6 css

DDO Rs

DD1 i=S

DD2 RP

DD3 A/G

DD4 A/S

DD5 CLK

CHB INV

0B INT/EXT

0A GMO

MS GM1

DA5 y

DA6 GM2

DA7 DA4

DAB DA2

Vee DA3

DA9 DA1

DA1 0 DAO

20 DA1 1 DA12 21

Fig A.1 6847 Video Chip

133

The Anatomy of the Dragon

The PIA Chip

vss eA1 40

2 PAO eA2 39

3 PA1 IRQA 38

4 PA2 IRQB 37

5 PA3 RSO 36

6 PA4 RS1 35

7 PA5 Reset 34

8 PA6 DO 33

9 PA7 01 32

10 PBO 02 31

1 1 PB1 03 30

12 PB2 04 29

13 PB3 05 28

14 PB4 06 27

1 5 PB5 07 26

1 6 PB6 E 25

17 PB7 es1 24

1 8 eB1 es2 23

19 eB2 eso 22

20 vee R/W 21

Fig A.2 6821 PIA

134

Appendix

The SAM Chip

A1 1 vcc 40

A1 0 A12

A9 A13

AS A14

OSC IN A15

OSC OUT V

VCLK Z6

DAO Z5

HS Z4

WE Z3

CAS Z2
RASo Z1

Q zo

E so

R/W S1

AO S2

A1 A7

A2 A6

A3 A5

20 GND A4 21

Fig A.3 6883 SAM chip

1 35

Appendix I (continued)

The complete list of SAM address pairs is

Address
pair Name Function

SET/CLEAR
FFDF/FFDE TY Map Type
FFDD/FFDC M1 Memory size
FFDB/FFDA MO
FFD9/FFD8 R1 CPU rate
FFD7 /FFD6 R2
FFD5/FFD4 P1 Page jf1
FFD3/FFD2 F6
FFD1 /FFDO FS
FFCF/FFCE F4
FFCD/FFCC F3 Display offset
FFCB/FFCA F2
FFC9/FFC8 F1
FFC7 /FFC6 FO
FFC5/FFC4 V2
FFC3/FFC2 V1 Display mode control
FFC1/FFCO VO

The function of the SAM control addresses VO to V2 and FO to F6 have
already been described in detail in Chapters 3 and 4. The rest are best left
alone because they are intimately connected with the Dragon's hardware
configuration. For example, the two control addresses M1 and M2 specify the
type and amount of memory used and, as a standard Dragon always has32K
of dynamic RAM, there is no point in changing the default setting. However,
the control addresses refered to as Pl will be of some interest if you feel like

136

The Anatomy of the Dragon

adding some more memory to your Dragon. By setting or clearing P1 you can
access one of two alternative 32K banks of memory controlled by the SAM.
The exact details of this are involved and you will certainly need a full data
sheet for the SAM chip before you could tackle such a project, but it is
possible.

The only other SAM control addresses worth knowing about are RO and
R 1. These govern the speed at which the 6809 CPU operates. While it is true
that all Dragons come equipped with a 'single speed' 6809 which is only
guaranteed to work at 1 MHz (or one memory access per microsecond) they
will often work at a higher speed. RO and Al control the 6809's speed in the
following way -

RO
0
0

R1
0
1

.9MHz
.9MHz for addresses 0000-7FFF and FF00-FF1 F 1.8MHz
for all other addresses
1.8MHz
1.8MHz

You are unlikely to have a Dragon in which all the components work at at
double speed, for one thing the SAM will only handle the dynamic RAM at
.9MHz! However the mode with RO set and Al clear will double the speed of
the 6809 when it is accessing ROM or 1 /0 and run at the normal speed when
accessing RAM. Not even this mode is guaranteed to work on all Dragons
because it is possible that the 6809 itself will refuse to work at this higher
speed! If you want to find out whether or not your Dragon will go faster simply
POKE/ &H FFD7 ,0. lf your machine goes silent tt)an it won't and you will have
to press reset to return things to normal. If you find that your Dragon does
carry on running after this POKE then you can use it at a higher speed but
remember to change back to the lower speed for saving and loading tapes,
playing music or anything that involves a time component that is set by the
speed that the 6809 is running at!

137

Appendix I I

The Graphics Modes

SAM PIA 1 resolution colours memory graphics
v2 v1 vO 7 6 5 4 3 2 1 0 rows x mode

cols
0 0 0 oxxocuuu 1 6 X 32 2 5 12 ALPHANUM
0 0 0 0 XX0 C U U U 16 x 32 2 5 12 ALPHA INV
0 0 0 0XX0 XU U U 32 x 64 9 512 SEMI-G 4
0 0 0 0XX 1 C U U U 48 x 64 2 512 SEMI-G 6
0 1 0 0XX0 X U U U 64 X 64 9 204 8SEMI-G 8
1 0 0 0XX0 X U U U 96 x 64 9 307 2SEMI-G 12
1 1 0 0XX0XU U U 1 92 x 64 9 6144 SEMI-G 24
0 0 1 1 0 0 0 C U U U 64 x 64 4 1 024 1 F
0 0 1 1 00 1 C U U U 64 x 1 28 2 1 024 1 T
0 1 0 1 0 1 0 C U U U 64 X 128 4 2048 2F
0 1 1 1 0 1 1 C U U U 96 x 1 28 2 1 536 PMODE 0
1 0 0 1 1 0 0 C U U U 96 X 1 28 4 3072 PMODE 1
1 0 1 1 1 0 1 CU U U 192 x 128 2 3072 PMODE 2
1 1 0 1 1 l 0 C U U U 1 92 x 1 28 4 6144 PMODE 3
1 1 0 1 1 1 1 C U U U 192 x 128 2 6144 PMODE 4

X means don't care, U means do not change and C selects between one of
two colour sets. For details of memory maps etc see Chapters 3 and 4.

1 38

Index

A CB2 87
Adding (New Commands) 120 CHR$ 33
Address Bus 8 CIRCLE DRAW 64, 73
ALGOL 124 CMOS Buffer 54
Alphanumeric Modes 21 COLOR f, b 44
AND 32,91 Control Bus 8
ARRAY 114 Control Pins 23
ASCII 25 CPU 6
A/SPin 28 CSAVE 57
A to D Converter 101
AUDIO 61 D

Data Bus 8
B Data Direction Register 87
Background Preservation 69 Data Formats 116
BASIC 1 Decimal 16
BASIC Interpreter 118 DIM 78
BASIC Lines 11 8 Display Modes 21
BASIC's Memory 112 DRAW 70
BASIC TIMER 106 D to A Converter. 50
Binary 93 Dummy Variable 61
Block Diagram 15
BREAK Key 97 E

END 114
C Expansion Port 107
CA1 87
CA2 87 F
Cassette Interface 105 Fire Buttons 105
CB1 87 FNNII 52

139

FORTRAN 124 M
Frame Pulse 9 Machine Code 123,125
Frame Sync 9 MC6847 9

Memory Locations 121
G Memory Mapping 9, 16
GET 64, 76 Modulator 14
Graphic Modes 21,45,135 MOTOR 61

H N

Hex 16, 93 NEW 118
High Resolution Graphics 40 NOT 91
HIMEM 115
Histograms 31 0

OR 91

Interrupts 89 Paged Graphics 64 INT/EXTPin 28
INVPin 25 PAINT 64, 73
Inverted Text 24 PCOPY 69

PCLEAR 44, 64
PCLS 44, 64
PEEK 24

Joystick 83 PIA 12, 86, 90
Joystick Interface 101 PLAY 51

PMOOES 41, 44, 49, 64
K POINT 31

POKE 24
Kaleidoscope Patterns 31 PRESET 64
Keyboard 95 PRINT 27

Printer Interface 99
L Program Text 114
LDAA 126 PSET 64, 74
Lightpens 83 Pulsating Circle 67
Light Sensor 84 PUT 64, 76
LINE 64,65, 74
Line Pulse 9 R
Line Sync 9 RAM 7
Low Resolution Graphics 28 RAM, Dynamic Chips 7
Lower Case Digits 27 RAM, Static Chips 7

140

RECORD 57 T
RESET 30 TAB 1 1 9
Recovering (programs) 1 1 8 Tempo 52
Reversing (Screen) 130 Text 24
ROM 7,8 TVOisplay 8

s

SAM 8, 9,23 u SAM Address Pairs Appendix I User Ports 1 4 Scaling Procedure 84
SCREEN 44,64
Semi·Graphic Modes 2 1 , 34,39

V SET 30
SOUNO 50 VAR 1 1 6
Sound Generator 53 VARPTR 81 , 1 1 7
Source 57 vou 109
Square Wave 56 Video Generator 9
START 1 1 4 Video RAM 9
Start Address 47 Voltage 53
String Storage 1 1 5 Voltage Transition 89
Synchronisation 62 Volume 52

141

A message from the publisher

Sigma Technical Press is a rapidly expanding British publisher. We work
closely in conjunction with John Wiley & Sons Ltd. who provide excellent
marketing and distribution facilities.

Would you like to join the winning team that published this and the other
highly successful books listed on the back cover? Specifically, could you
write a book that would be of interest to the new, mass computer
market?

Our most successful books are linked to particular computers, and we intend
to pursue this policy. We see an immense market for books relating to such
machines as:

The BBC Computer
PET
Apple
Tandy
Sinclair
Osborne
Atari
IBM
Sirius . . . and many others

If you think you can write a book around one of these or any other popular
computer - or on more general themes - we would like to hear from you.

Please write to: Graham Beech,
Sigma Technical Press,
5 Alton Road,
Wilmslow,
Cheshire, SK9 5 DY,
United Kingdom.

Or, telephone 0625-531035.

	1
	lc-n001
	lc-n002
	lc-n003
	lc-n004
	lc-n005
	lc-n006
	lc-p001
	lc-p002
	lc-p003
	lc-p004
	lc-p005
	lc-p006
	lc-p007
	lc-p008
	lc-p009
	lc-p010
	lc-p011
	lc-p012
	lc-p013
	lc-p014
	lc-p015
	lc-p016
	lc-p017
	lc-p018
	lc-p019
	lc-p020
	lc-p021
	lc-p022
	lc-p023
	lc-p024
	lc-p025
	lc-p026
	lc-p027
	lc-p028
	lc-p029
	lc-p030
	lc-p031
	lc-p032
	lc-p033
	lc-p034
	lc-p035
	lc-p036
	lc-p037
	lc-p038
	lc-p039
	lc-p040
	lc-p041
	lc-p042
	lc-p043
	lc-p044
	lc-p045
	lc-p046
	lc-p047
	lc-p048
	lc-p049
	lc-p050
	lc-p051
	lc-p052
	lc-p053
	lc-p054
	lc-p055
	lc-p056
	lc-p057
	lc-p058
	lc-p059
	lc-p060
	lc-p061
	lc-p062
	lc-p063
	lc-p064
	lc-p065
	lc-p066
	lc-p067
	lc-p068
	lc-p069
	lc-p070
	lc-p071
	lc-p072
	lc-p073
	lc-p074
	lc-p075
	lc-p076
	lc-p077
	lc-p078
	lc-p079
	lc-p080
	lc-p081
	lc-p082
	lc-p083
	lc-p084
	lc-p085
	lc-p086
	lc-p087
	lc-p088
	lc-p089
	lc-p090
	lc-p091
	lc-p092
	lc-p093
	lc-p094
	lc-p095
	lc-p096
	lc-p097
	lc-p098
	lc-p099
	lc-p100
	lc-p101
	lc-p102
	lc-p103
	lc-p104
	lc-p105
	lc-p106
	lc-p107
	lc-p108
	lc-p109
	lc-p110
	lc-p111
	lc-p112
	lc-p113
	lc-p114
	lc-p115
	lc-p116
	lc-p117
	lc-p118
	lc-p119
	lc-p120
	lc-p121
	lc-p122
	lc-p123
	lc-p124
	lc-p125
	lc-p126
	lc-p127
	lc-p128
	lc-p129
	lc-p130
	lc-p131
	lc-p132
	lc-p133
	lc-p134
	lc-p135
	lc-p136
	lc-p137
	lc-p138
	lc-p139
	lc-p140
	lc-p141
	lc-p142
	z

